Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36234653

ABSTRACT

In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM) cell based on a polycrystalline silicon dual-gate metal-oxide-semiconductor field-effect transistor with a fin-shaped structure was optimized and analyzed using technology computer-aided design simulation. The proposed 1T-DRAM demonstrated improved memory characteristics owing to the adoption of the fin-shaped structure on the side of gate 2. This was because the holes generated during the program operation were collected on the side of gate 2, allowing an expansion of the area where the holes were stored using the fin-shaped structure. Therefore, compared with other previously reported 1T-DRAM structures, the fin-shaped structure has a relatively high retention time due to the increased hole storage area. The proposed 1T-DRAM cell exhibited a sensing margin of 2.51 µA/µm and retention time of 598 ms at T = 358 K. The proposed 1T-DRAM has high retention time and chip density, so there is a possibility that it will replace DRAM installed in various applications such as PCs, mobile phones, and servers in the future.

2.
Materials (Basel) ; 15(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160771

ABSTRACT

The self-heating effects (SHEs) on the electrical characteristics of the GaN MOSFETs with a stacked TiO2/Si3N4 dual-layer insulator are investigated by using rigorous TCAD simulations. To accurately analyze them, the GaN MOSFETs with Si3N4 single-layer insulator are conducted to the simulation works together. The stacked TiO2/Si3N4 GaN MOSFET has a maximum on-state current of 743.8 mA/mm, which is the improved value due to the larger oxide capacitance of TiO2/Si3N4 than that of a Si3N4 single-layer insulator. However, the electrical field and current density increased by the stacked TiO2/Si3N4 layers make the device's temperature higher. That results in the degradation of the device's performance. We simulated and analyzed the operation mechanisms of the GaN MOSFETs modulated by the SHEs in view of high-power and high-frequency characteristics. The maximum temperature inside the device was increased to 409.89 K by the SHEs. In this case, the stacked TiO2/Si3N4-based GaN MOSFETs had 25%-lower values for both the maximum on-state current and the maximum transconductance compared with the device where SHEs did not occur; Ron increased from 1.41 mΩ·cm2 to 2.56 mΩ·cm2, and the cut-off frequency was reduced by 26% from 5.45 GHz. Although the performance of the stacked TiO2/Si3N4-based GaN MOSFET is degraded by SHEs, it shows superior electrical performance than GaN MOSFETs with Si3N4 single-layer insulator.

3.
J Nanosci Nanotechnol ; 21(8): 4235-4242, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33714309

ABSTRACT

In this paper, a 1T-DRAM based on the junctionless field-effect transistor (JLFET) with a silicon-germanium (SiGe) and silicon (Si) nanotube structure was designed and investigated by using technology computer-aided design (TCAD) simulations. Utilizing bandgap engineering to make a quantum well in the core-shell structure, the storage pocket is formed by the difference in bandgap energy between SiGe and Si. By applying different voltage conditions at the inner gate and outer gate, excess holes are generated in the storage region by the band-to-band tunneling (BTBT) mechanism. The BTBT mechanism results in the floating body effect, which is the principle of 1T-DRAM. The varying amount of the accumulated holes in the SiGe region allows differentiating between state "1" and state "0." Additionally, the outer gate plays a role of the conventional gate, while the inner gate retains holes in the hold state by applying voltage. Consequently, the optimized SiGe/Si JLFET-based nanotube 1T-DRAM achieved a high sensing margin of 15.4 µA/µm, and a high retention time of 105 ms at a high temperature of 358 K. In addition, it has been verified that a single cycle of 1T-DRAM operations consumes only 33.6 fJ of energy, which is smaller than for previously proposed 1T-DRAMs.

4.
J Nanosci Nanotechnol ; 21(8): 4258-4267, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33714312

ABSTRACT

In this paper, we present a capacitorless one transistor dynamic random access memory (1T-DRAM) based on a polycrystalline silicon (poly-Si) double gate MOSFET with grain boundaries (GBs). Several studies have been conducted to implement 1T-DRAM using poly-Si. This is because poly-Si has the advantage of low-cost fabrication and can be stacked. However, poly-Si has GBs, which can adversely affect semiconductor device. So far, related studies on poly-Si-based 1T-DRAM have only focused on GBs present in the channel domain. Hence, in this study, we analyzed the transfer and memory characteristics when a GB is present in the source and drain regions. As a result, we found that in the center of the depletion region in the source and channel junction, where the effect of GB was most significant, sensing margins decreased the most from 0.88 to 0.29 µA/µm, and retention time (RT) decreased from 85 ms to 47 µs. In addition, we found that at the center of the depletion region in the drain and channel junction, where the effect of GBs was most significant in the drain region, RT decreased the most from 85 ms to 52 µs.

5.
J Nanosci Nanotechnol ; 21(8): 4320-4324, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33714321

ABSTRACT

In this study, a high-performance vertical gallium nitride (GaN) power transistor is designed by using two-dimensional technology computer-aided design simulator. The vertical GaN transistor is used to analyze the DC/DC boost converter. The systems requiring high voltages of 1000 V or more, such as electric vehicles, need wide devices to achieve a high breakdown voltage when using conventional power devices. However, vertical GaN transistors can be fabricated with small device area and high breakdown voltage. The proposed device has an off-current of 4.72×10-10 A/cm², an on-current of 17,528 A/cm², and a high breakdown voltage of 1,265 V due to good gate controllability and the very long gate-to-drain length. Using the designed device, a boost converter that doubles the input voltage was constructed and is characteristics were examined. The designed boost converter obtained an output voltage of 1,951 V and the voltage conversion efficiency was considerably high at 97.55% when the input voltage was 1,000 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...