Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4067, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744958

ABSTRACT

The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.


Subject(s)
Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Immunotherapy/methods , Gene Expression Profiling , Interferons/metabolism
2.
Nat Cancer ; 4(6): 844-859, 2023 06.
Article in English | MEDLINE | ID: mdl-37308678

ABSTRACT

Immune-related adverse events (irAEs) induced by checkpoint inhibitors involve a multitude of different risk factors. Here, to interrogate the multifaceted underlying mechanisms, we compiled germline exomes and blood transcriptomes with clinical data, before and after checkpoint inhibitor treatment, from 672 patients with cancer. Overall, irAE samples showed a substantially lower contribution of neutrophils in terms of baseline and on-therapy cell counts and gene expression markers related to neutrophil function. Allelic variation of HLA-B correlated with overall irAE risk. Analysis of germline coding variants identified a nonsense mutation in an immunoglobulin superfamily protein, TMEM162. In our cohort and the Cancer Genome Atlas (TCGA) data, TMEM162 alteration was associated with higher peripheral and tumor-infiltrating B cell counts and suppression of regulatory T cells in response to therapy. We developed machine learning models for irAE prediction, validated using additional data from 169 patients. Our results provide valuable insights into risk factors of irAE and their clinical utility.


Subject(s)
Immune System Diseases , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neutrophils , Risk Factors
3.
Nat Genet ; 55(2): 221-231, 2023 02.
Article in English | MEDLINE | ID: mdl-36624345

ABSTRACT

Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of >36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to >1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of >25 million mutations in >9,000 treatment-naive tumors with >100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Epitopes/genetics , T-Lymphocytes , Peptides/chemistry , Peptides/metabolism
5.
Nat Biomed Eng ; 5(1): 114-123, 2021 01.
Article in English | MEDLINE | ID: mdl-33288878

ABSTRACT

In many cancers, tumour progression is associated with increased tissue stiffness. Yet, the mechanisms associating tissue stiffness with tumorigenesis and malignant transformation are unclear. Here we show that in gastric cancer cells, the stiffness of the extracellular matrix reversibly regulates the DNA methylation of the promoter region of the mechanosensitive Yes-associated protein (YAP). Reciprocal interactions between YAP and the DNA methylation inhibitors GRHL2, TET2 and KMT2A can cause hypomethylation of the YAP promoter and stiffness-induced oncogenic activation of YAP. Direct alteration of extracellular cues via in situ matrix softening reversed YAP activity and the epigenetic program. Our findings suggest that epigenetic reprogramming of the mechanophysical properties of the extracellular microenvironment of solid tumours may represent a therapeutic strategy for the inhibition of cancer progression.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinogenesis , DNA Methylation , Extracellular Matrix , Stomach Neoplasms , Transcription Factors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/physiopathology , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...