Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 387
Filter
1.
Cancer Cell Int ; 24(1): 158, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711062

ABSTRACT

OBJECTIVE: Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS: HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS: HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION: Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.

2.
Int J Biol Macromol ; 269(Pt 1): 131812, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670197

ABSTRACT

An important micronutrient involved in immune response and antitumor is selenium. LMW-GFP, a polysaccharide extracted from Grifola frondosa seed bodies, has a relatively weak antitumor effect on BGC-823 and MFC cells in vitro, whereas selenium binding to LMW-GFP can significantly increase the in vitro antitumor activity of LMW-GFP. In this study, Se-LMW-GFP was prepared by the HNO3-Na2SeO3 method, and the structures of LMW-GFP and Se-LMW-GFP were characterized by UV-visible spectroscopy of absorption, FTIR spectroscopy, and electron scanning microscopy, and these structural analyses showed that selenium was successfully complexed to LMW-GFP. The selenium content of Se-LMW-GFP was measured to be 2.08 % ± 0.08 % by ICP-MS. The anti-tumor activity of LMW-GFP before and after selenium modification was compared by cellular experiments, and the findings indicated that the anti-tumor activity of Se-LMW-GFP was considerably improved over that of LMW-GFP, and inhibited the proliferation of BGC-823 cells and MFC cells through a combination of the Fas/FasL-mediated exogenous death receptor pathway as well as the endogenous mitochondrial pathway. Our results suggest that Se-LMW-GFP not only has great potential for natural health food and anti-gastric cancer drug development but is also a good selenium supplement.


Subject(s)
Cell Proliferation , Grifola , Molecular Weight , Selenium , Stomach Neoplasms , Grifola/chemistry , Humans , Selenium/chemistry , Selenium/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
3.
J Clin Med ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610761

ABSTRACT

Background: Benign paroxysmal positional vertigo (BPPV) is characterized by brief, intense episodes of vertigo triggered by abrupt changes in head position. It is generally accepted as being most common in adults, while it is regarded as rare in children. It is necessary to compare the disease between pediatric and adult patients for a better understanding of the disease's characteristics and its natural history. This study aimed to identify the clinical characteristics of BPPV in children and compare them with those of adult BPPV patients. Methods: All children ≤ 18 years old who were diagnosed with BPPV were selected by searching the electronic database of our hospital. Clinical features were identified by medical record review. For adult patients, we collected data from patients > 19 years of age. Results: A total of 30 pediatric (13.65 ± 4.15 years old) and 264 adult patients (60.86 ± 13.74 years old) were included in the study. Among pediatric patients, the lateral canals were involved in 80% and the posterior canals in 16.67%. In adult patients, the lateral and posterior canals were involved similarly (p = 0.007). The degree of nystagmus in pediatric patients was 6.82 ± 12.09, while in adults it was 15.58 ± 20.90 (p < 0.001). The concurrent dizziness disorder was higher in the pediatric group and recurrence was higher in the adult group. In the regression analysis, it was found that adult patients had a stronger nystagmus with a value of 6.206 deg/sec, and the risk of concurrent dizziness disorder was found to be 5.413 times higher in the pediatric group (p < 0.05). Conclusions: BPPV occurs in pediatric patients with lower prevalence, but it cannot be overlooked. In the pediatric group, a relatively high proportion of patients demonstrated lateral canal involvement, weaker nystagmus, and additional dizziness disorder.

4.
J Agric Food Chem ; 72(14): 7716-7726, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536397

ABSTRACT

The emergence of resistant pathogens has increased the demand for alternative fungicides. The use of natural products as chemical scaffolds is a potential method for developing fungicides. HWY-289, a semisynthetic protoberberine derivative, demonstrated broad-spectrum and potent activities against phytopathogenic fungi, particularly Botrytis cinerea (with EC50 values of 1.34 µg/mL). SEM and TEM imaging indicated that HWY-289 altered the morphology of the mycelium and the internal structure of cells. Transcriptomics revealed that it could break down cellular walls through amino acid sugar and nucleotide sugar metabolism. In addition, it substantially decreased chitinase activity and chitin synthase gene (BcCHSV) expression by 53.03 and 82.18% at 1.5 µg/mL, respectively. Moreover, this impacted the permeability and integrity of cell membranes. Finally, HWY-289 also hindered energy metabolism, resulting in a significant reduction of ATP content, ATPase activities, and key enzyme activities in the TCA cycle. Therefore, HWY-289 may be a potential candidate for the development of plant fungicides.


Subject(s)
Antifungal Agents , Berberine Alkaloids , Berberine/analogs & derivatives , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Botrytis , Sugars , Plant Diseases/microbiology
5.
Food Chem Toxicol ; 186: 114564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438009

ABSTRACT

Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.


Subject(s)
Arsenates , Arsenic Poisoning , Arsenic , Gastrointestinal Microbiome , Animals , Mice , Arsenic/toxicity , Arsenic/metabolism , Bioaccumulation , Mice, Inbred C57BL , Biotransformation , Mammals
6.
Int J Food Microbiol ; 416: 110675, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38479336

ABSTRACT

The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.


Subject(s)
Pseudomonas , Shewanella putrefaciens , Animals , Fish Proteins , Proteolysis , Food Microbiology , Fishes , Whole Genome Sequencing
7.
J Agric Food Chem ; 72(13): 6988-6997, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506764

ABSTRACT

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.


Subject(s)
Alkaloids , Indole Alkaloids , Oryza , Quinolines , Xanthomonas , Oryza/genetics , Type III Secretion Systems/genetics , Bacteria/metabolism , Xanthomonas/genetics , Plant Diseases/prevention & control , Plant Diseases/microbiology
8.
Phys Rev Lett ; 132(9): 090401, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489615

ABSTRACT

The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.

9.
Int J Hyg Environ Health ; 257: 114342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401403

ABSTRACT

Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 µg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.


Subject(s)
Arsenic , Arsenicals , Non-alcoholic Fatty Liver Disease , Humans , Arsenic/analysis , Non-alcoholic Fatty Liver Disease/epidemiology , Case-Control Studies , Environmental Exposure , Arsenicals/urine , Cacodylic Acid/urine
10.
Mikrochim Acta ; 191(3): 156, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407632

ABSTRACT

A magnetic fluorescent molecularly imprinted sensor was successfully prepared and implemented to determine catechol (CT). Fe3O4 nanoparticles were synthesized by the solvothermal technique and mesoporous Fe3O4@SiO2@mSiO2 imprinted carriers were prepared by coating nonporous and mesoporous SiO2 shells on the surface of the Fe3O4 subsequently. The magnetic surface molecularly imprinted fluorescent sensor was created after the magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane to introduce double bonds on the surface of the carries and the polymerization was carried out in the presence of CT and fluorescent monomers. The magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane and double bonds were introduced on the surface of the carriers. After CT binding with the molecularly imprinted polymers (MIPs), the fluorescent intensity of the molecularly imprinted polymers (Ex = 400 nm, Em = 523 nm) increased significantly. The fluorescent intensity ratio (F/F0) of the sensor demonstrated a favorable linear correlation with the concentration of CT between 5 and 50 µM with a detection limit of 0.025 µM. Furthermore, the sensor was successfully applied to determine CT in actual samples with recoveries of 96.4-105% and relative standard deviations were lower than 3.5%. The results indicated that the research of our present work provided an efficient approach for swiftly and accurately determining organic pollutant in water.

11.
ACS Appl Mater Interfaces ; 16(3): 3621-3630, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197805

ABSTRACT

The metallic conductive filament (CF) model, which serves as an important conduction mechanism for realizing synaptic functions in electronic devices, has gained recognition and is the subject of extensive research. However, the formation of CFs within the active layer is plagued by issues such as uncontrolled and random growth, which severely impacts the stability of the devices. Therefore, controlling the growth of CFs and improving the performance of the devices have become the focus of that research. Herein, a synaptic device based on polyvinylpyrrolidone (PVP)/graphene oxide quantum dot (GO QD) nanocomposites is proposed. Doping GO QDs in the PVP provides a large number of active centers for the reduction of silver ions, which allows, to a certain extent, the growth of CFs to be controlled. Because of this, the proposed device can simulate a variety of synaptic functions, including the transition from long-term potentiation to long-term depression, paired-pulse facilitation, post-tetanic potentiation, transition from short-term memory to long-term memory, and the behavior of the "learning experience". Furthermore, after being bent repeatedly, the devices were still able to simulate multiple synaptic functions accurately. Finally, the devices achieved a high recognition accuracy rate of 89.39% in the learning and inference tests, producing clear digit classification results.

12.
Comput Struct Biotechnol J ; 23: 234-250, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38161736

ABSTRACT

TRIB3, a pseudokinase, was previously studied within only some specific cancer types, leaving its comprehensive functions in pan-cancer contexts largely unexplored. Here, we performed an integrated analysis of TRIB3 expression, prognosis, genetic alterations, functional enrichment and tumor immune-related characteristics in 33 cancer types. Our results showed that TRIB3 exhibits high expression levels across 24 different cancer types and correlates closely with unfavorable prognoses. Meanwhile, TRIB3 shows mutations in a wide spectrum of 22 distinct cancer types, with the predominant mutation types being missense mutations and gene amplifications, and significant changes in DNA methylation levels in 14 types of cancer. We further discovered that TRIB3 expression is significantly associated with cancer immune-related genome mutations, such as tumor mutational burden (TMB), microsatellite instability (MSI) and DNA mismatch repair (MMR), and infiltration of immunosuppressive cells, such as CD4+ Th2 cells and myeloid-derived suppressor cells (MDSCs), into the tumor microenvironment. These results indicated that the expression of TRIB3 might reshape the tumor immune microenvironment (TIME) and lead to immunosuppressive "cold" tumors. In addition, our results confirmed that the loss of function of TRIB3 inhibits cell proliferation, promotes apoptosis, and leads to significant enrichment of "hot" tumor-related immune pathways, at least in breast cancer cells, which further supports the important role of TRIB3 in cancer prognosis and TIME regulation. Together, this pan-cancer investigation provided a comprehensive understanding of the critical role of TRIB3 in human cancers, and suggested that TRIB3 might be a promising prognostic biomarker and a potential target for cancer immunotherapy.

13.
Food Chem Toxicol ; 184: 114409, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128686

ABSTRACT

BACKGROUND: Studies demonstrated the associations of cadmium (Cd) with lipid levels and dyslipidemia risk, but the mechanisms involved need further exploration. OBJECTIVES: We aimed to explore the role of DNA methylation (DNAM) in the relationship of Cd with lipid levels and dyslipidemia risk. METHODS: Urinary cadmium levels (UCd) were measured by inductively coupled plasma mass spectrometry, serum high-density lipoprotein (HDL), total cholesterol, triglyceride, and low-density lipoprotein were measured with kits, and DNAM was measured using the Infinium MethylationEPIC BeadChip. Robust linear regressions were conducted for epigenome-wide association study. Multivariate linear and logistic regressions were performed to explore the associations of UCd with lipid levels and dyslipidemia risk, respectively. Mediation analyses were conducted to explore potential mediating role of DNAM in the associations of Cd with lipid levels and dyslipidemia risk. RESULTS: UCd was negatively associated with HDL levels (p = 0.01) and positively associated with dyslipidemia (p < 0.01). There were 92/11 DMPs/DMRs (FDR<0.05) associated with UCd. Cd-associated DNAM and pathways were connected with cardiometabolic diseases and immunity. Cg07829377 (LINC01060) mediated 42.05%/22.88% of the UCd-HDL/UCd-dyslipidemia associations (p = 0.02 and 0.01, respectively). CONCLUSIONS: Cadmium caused site-specific DNAM alterations and the associations of UCd with lipid levels and dyslipidemia risk may be partially mediated by DNAM.


Subject(s)
DNA Methylation , Dyslipidemias , Humans , Epigenome , Cadmium , Triglycerides , Dyslipidemias/genetics
14.
Int J Gen Med ; 16: 5559-5566, 2023.
Article in English | MEDLINE | ID: mdl-38034899

ABSTRACT

Background: Laryngeal cancer was one of the most common malignancies of the head in those years. It has become one of the most common causes of death due to its high recurrence rate and high metastasis rate. It was well known that platelets, especially activated platelets, promote the proliferation, division, and invasion of tumor cells. Activated platelets promote cancer progression and metastasis. However, the prognostic value of platelet aggregation function in laryngeal cancer remains poorly understood. The purpose of this study was to investigate the predictive significance of platelet aggregation function in laryngeal cancer. Materials and Methods: Between January 2015 and December 2016, we conducted a retrospective analysis of 203 patients who were diagnosed with laryngeal cancer consecutively. The patients were stratified by platelet aggregation function into two groups: low "adenosine diphosphate induced light transmittance aggregometry (ADP-induced LTA) ≤15.1" and high (ADP-induced LTA >15.1). Pathological tissues from different parts of the operation were collected and the pathologist determined the pathological type. We assessed the prognostic significance of platelet aggregation function using Kaplan-Meier curves and Cox regression. Results: The low cohort had a significantly higher lymphocyte count than the high cohort. Compared with the high cohort, the low cohort had significantly lower levels of platelet-to-lymphocyte ratio (PLR), ADP-induced LTA, and Interleukins (IL)-6. The ADP-induced LTA (hazard ratio, 1.212; P <0.001) was independently related with 5-year overall survival rate. Conclusion: Patients with ADP-induced LTA >15.1 experience poor outcomes. Platelet aggregation function, when elevated, could be a new prognostic indicator for laryngeal cancer.

15.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188998, 2023 11.
Article in English | MEDLINE | ID: mdl-37858623

ABSTRACT

Gastric cancer (GC) is one of the severe malignancies with high incidence and mortality, especially in Eastern Asian countries. Significant advancements have been made in diagnosing and treating GC over the past few decades, resulting in tremendous improvements in patient survival. In recent years, traditional Chinese medicine (TCM) has garnered considerable attention as an alternative therapeutic approach for GC due to its multicomponent and multitarget characteristics. Consequently, natural products found in TCM have attracted researchers' attention, as growing evidence suggests that these natural products can impede GC progression by regulating various biological processes. Nevertheless, their molecular mechanisms are not systematically uncovered. Here, we review the major signaling pathways involved in GC development. Additionally, clinical GC samples were analyzed. Moreover, the anti-GC effects of natural products, their underlying mechanisms and potential targets were summarized. These summaries are intended to facilitate further relevant research, and accelerate the clinical applications of natural products in GC treatment.


Subject(s)
Biological Products , Stomach Neoplasms , Humans , Medicine, Chinese Traditional/methods , Biological Products/pharmacology , Biological Products/therapeutic use , Stomach Neoplasms/drug therapy , Signal Transduction
16.
Redox Biol ; 67: 102910, 2023 11.
Article in English | MEDLINE | ID: mdl-37793240

ABSTRACT

BACKGROUND: Essential trace elements (ETEs) play essential roles in vital functions, but their effects on epigenetic aging remain poorly understood. OBJECTIVES: This study aimed to investigate the associations of ETEs with four epigenetic aging indicators and assess the potential mediating role of inflammation. METHODS: We recruited 93 individuals from hospitals between October 2018 and August 2019. Plasma levels of cobalt, copper, iron, manganese, molybdenum, selenium, and zinc were measured by ICP-MS, and leukocyte DNA methylation levels were measured using Illumina MethylationEPIC beadchip. Linear regression was used to estimate the association between seven plasma ETEs and epigenetic aging indicators. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were used to evaluate the effect of ETEs mixtures. Inflammatory status was assessed using four systemic inflammation indices (neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII)) and three cytokines (IL-4, IL-6, and IL-13). Mediation analysis was performed to explore the role of inflammation in the above associations. RESULTS: Plasma Se levels were significantly negatively associated with DunedinPACE, whereas Cu levels were significantly positively associated with it. Both WQS regression and BKMR models suggested that Se and Cu dominate the effect of the ETEs mixture. MLR and interleukin 6 were significantly and positively associated with DunedinPACE. Further mediation analysis indicated that inflammation partially mediated the association between ETEs and DunedinPACE. DISCUSSION: Plasma Se and Cu levels are closely associated to epigenetic aging, and inflammation might be a potential mechanism underlying this relationship. These findings contribute to the prevention of health hazards associated with population aging.


Subject(s)
Trace Elements , Humans , Trace Elements/metabolism , Copper , Bayes Theorem , Inflammation/genetics , Aging/genetics , Epigenesis, Genetic
17.
Zhongguo Zhen Jiu ; 43(10): 1109-13, 2023 Oct 12.
Article in Chinese | MEDLINE | ID: mdl-37802514

ABSTRACT

OBJECTIVE: To compare the curative effect between interactive scalp acupuncture and traditional scalp acupuncture on hemiplegic upper extremity motor dysfunction in the patients with ischemic stroke. METHODS: Seventy cases of hemiplegic upper extremity motor dysfunction of ischemic stroke were randomly divided into an interactive scalp acupuncture group (35 cases, 1 case breaked off) and a traditional scalp acupuncture group (35 cases, 1 case dropped off). The patients of the two groups received the secondary prevention medication and routine rehabilitation therapy. Besides, in the interactive scalp acupuncture group, the upper extremity occupational therapy was operated during the needle retaining of scalp acupuncture; and in the traditional scalp acupuncture group, the upper extremity occupational therapy was delivered after the completion of scalp acupuncture. The same points were selected in the two groups such as Fuxiang head area, Fuxiang upper-limb-shoulder point, Fuxiang upper-limb-elbow point and Fuxiang upper-limb-wrist point. The needles were inserted perpendicularly by flying-needle technique and manipulated by triple technique of gentle twisting, heavy pressure and vibrating. The needles were retained for 30 min. Based on the degree of the upper extremity motor impairment, the regimen of the upper extremity occupational therapy was formulated individually and one treatment took 30 min. In the two groups, the therapies were delivered once daily, 5 times a week, lasting 4 weeks. Before and after treatment, the scores of Fugl-Meyer assessment of upper extremity (FMA-UE), Wolf motor function test (WMFT), the modified Barthel index (MBI) and the modified Ashworth scale (MAS) grade in the two groups were observed before and after treatment. RESULTS: After treatment, the scores of FMA-UE, WMFT and MBI were higher than those before treatment (P<0.01), and MAS grade was improved (P<0.05) in the two groups. The scores of FMA-UE, WMFT and MBI in the interactive scalp acupuncture group were higher than those in the traditional scalp acupuncture group (P<0.01, P<0.05), and there was no statistical significance in the difference of MAS grade between the two groups (P>0.05). CONCLUSION: The interactive scalp acupuncture can effectively improve the motor function of the hemiplegic upper extremities and the activities of daily living in the patients with ischemic stroke and its efficacy is better than traditional scalp acupuncture. But these two types of scalp acupuncture obtain the similar effect on spasticity.


Subject(s)
Acupuncture Therapy , Ischemic Stroke , Stroke Rehabilitation , Stroke , Humans , Stroke/therapy , Ischemic Stroke/complications , Activities of Daily Living , Hemiplegia/etiology , Hemiplegia/therapy , Scalp , Treatment Outcome , Acupuncture Therapy/methods , Upper Extremity
18.
Phytomedicine ; 120: 155031, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666060

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM: The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS: HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS: We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3  (STAT3)  was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION: Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , STAT3 Transcription Factor , Molecular Docking Simulation
19.
Environ Pollut ; 337: 122541, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37717893

ABSTRACT

Persistent organochlorine pesticide (OCP) has been associated with type 2 diabetes (T2D), and genetic polymorphism might modify such an association. However, prospective evidence remains scarce. We conducted a nested case-control study comprising 1006 incident diabetic cases and 1006 matched non-diabetic controls [sex and age (±5 years)] from 2008 to 2013 (mean follow-up period: ∼4.6 years) based on the Dongfeng-Tongji cohort in Shiyan City of China, determined baseline levels of nineteen OCPs, and examined the associations of circulating OCPs, both individually and collectively, with incident T2D risk. We also constructed overall genetic risk score (GRS) based on 161 T2D-associated variants and five pathway-specific cluster GRSs based on established variants derived from the Asian population. Compared with the first quartile of serum ß-BHC levels, the multivariable-adjusted ORs (95% CIs) of incident T2D risk in the second, third, and fourth quartiles were 0.98 (0.70-1.39), 1.43 (0.99-2.07), and 1.75 (1.14-2.68), respectively (FDR-adjusted Ptrend = 0.03). A positive association was observed between serum OCP mixture and incident T2D risk and can be largely attributed to ß-BHC. Furthermore, serum ß-BHC and p,p'-DDE showed significant interactions with the GRS for lipodystrophy, a T2D-related pathway representing fat redistribution to viscera, on T2D risk (Pinteraction < 0.05). In conclusion, higher circulating OCP levels were independently associated with an increased risk of T2D, with ß-BHC possibly being the major contributor. Genetic predisposition to T2D-related morbidity, such as visceral adiposity, should be considered when assessing the risk of T2D conferred by OCPs.


Subject(s)
Diabetes Mellitus, Type 2 , Hydrocarbons, Chlorinated , Pesticides , Humans , Genetic Predisposition to Disease , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Prospective Studies , Case-Control Studies , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Dichlorodiphenyl Dichloroethylene/analysis
20.
Nat Commun ; 14(1): 5788, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723150

ABSTRACT

Currently, the influence of the tumor microbiome on the effectiveness of immunotherapy remains largely unknown. Intratumoural Fusobacterium nucleatum (Fn) functions as an oncogenic bacterium and can promote tumor progression in esophageal squamous cell carcinoma (ESCC). Our previous study revealed that Fn is a facultative intracellular bacterium and that its virulence factor Fn-Dps facilitates the intracellular survival of Fn. In this study, we find that Fn DNA is enriched in the nonresponder (NR) group among ESCC patients receiving PD-1 inhibitor and that the serum antibody level of Fn is significantly higher in the NR group than in the responder (R) group. In addition, Fn infection has an opposite impact on the efficacy of αPD-L1 treatment in animals. Mechanistically, we confirm that Fn can inhibit the proliferation and cytokine secretion of T cells and that Fn-Dps binds to the PD-L1 gene promoter activating transcription factor-3 (ATF3) to transcriptionally upregulate PD-L1 expression. Our results suggest that it may be an important therapeutic strategy to eradicate intratumoral Fn infection before initiating ESCC immunotherapies.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Fusobacterium nucleatum , B7-H1 Antigen/genetics , Esophageal Neoplasms/therapy , Activating Transcription Factor 3
SELECTION OF CITATIONS
SEARCH DETAIL
...