Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38613320

ABSTRACT

Melanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45- cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.g., Kit+, Cd34+/-, Plp1+, Cd274+/-, Thy1+, Cdh3+/-) and identified novel qMcSC subpopulations, including two that differentially regulate their immune privilege status. Within qMcSC subpopulations, we also predicted melanocyte differentiation potential, neural crest potential, and quiescence depth. Taken together, the results demonstrate that the qMcSC population is heterogeneous and future studies focused on investigating changes in qMcSCs should consider changes in subpopulation composition.

2.
Nat Commun ; 15(1): 796, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280858

ABSTRACT

Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal re-pigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.


Subject(s)
Vitiligo , Humans , Male , Female , Animals , Mice , Vitiligo/therapy , Sex Characteristics , Skin , Melanocytes , Stem Cells , Immunoglobulins , Skin Pigmentation
4.
Pigment Cell Melanoma Res ; 36(6): 531-541, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37462349

ABSTRACT

Melanocyte stem cells (McSCs) of the hair follicle are necessary for hair pigmentation and can serve as melanoma cells of origin when harboring cancer-driving mutations. McSCs can be released from quiescence, activated, and undergo differentiation into pigment-producing melanocytes during the hair cycle or due to environmental stimuli, such as ultraviolet-B (UVB) exposure. However, our current understanding of the mechanisms regulating McSC stemness, activation, and differentiation remains limited. Here, to capture the differing possible states in which murine McSCs can exist, we sorted melanocyte nuclei from quiescent (telogen) skin, skin actively producing hair shafts (anagen), and skin exposed to UVB. With these sorted nuclei, we then utilized single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and characterized three melanocyte lineages: quiescent McSCs (qMcSCs), activated McSCs (aMcSCs), and differentiated melanocytes (dMCs) that co-exist in all three skin conditions. Furthermore, we successfully identified differentially accessible genes and enriched transcription factor binding motifs for each melanocyte lineage. Our findings reveal potential gene regulators that determine these melanocyte cell states and provide new insights into how aMcSC chromatin states are regulated differently under divergent intrinsic and extrinsic cues. We also provide a publicly available online tool with a user-friendly interface to explore this comprehensive dataset, which will provide a resource for further studies on McSC regulation upon natural or UVB-mediated stem cell activation.


Subject(s)
Chromatin , Melanocytes , Mice , Animals , Chromatin/metabolism , Melanocytes/metabolism , Skin , Hair Follicle/metabolism , Stem Cells , Cell Differentiation
5.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37293072

ABSTRACT

Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal repigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.

6.
Cancer Res ; 83(14): 2328-2344, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37195124

ABSTRACT

Therapies targeting oncogene addiction have had a tremendous impact on tumor growth and patient outcome, but drug resistance continues to be problematic. One approach to deal with the challenge of resistance entails extending anticancer treatments beyond targeting cancer cells by additionally altering the tumor microenvironment. Understanding how the tumor microenvironment contributes to the evolution of diverse resistance pathways could aid in the design of sequential treatments that can elicit and take advantage of a predictable resistance trajectory. Tumor-associated macrophages often support neoplastic growth and are frequently the most abundant immune cell found in tumors. Here, we used clinically relevant in vivo Braf-mutant melanoma models with fluorescent markers to track the stage-specific changes in macrophages under targeted therapy with Braf/Mek inhibitors and assessed the dynamic evolution of the macrophage population generated by therapy pressure-induced stress. During the onset of a drug-tolerant persister state, Ccr2+ monocyte-derived macrophage infiltration rose, suggesting that macrophage influx at this point could facilitate the onset of stable drug resistance that melanoma cells show after several weeks of treatment. Comparison of melanomas that develop in a Ccr2-proficient or -deficient microenvironment demonstrated that lack of melanoma infiltrating Ccr2+ macrophages delayed onset of resistance and shifted melanoma cell evolution towards unstable resistance. Unstable resistance was characterized by sensitivity to targeted therapy when factors from the microenvironment were lost. Importantly, this phenotype was reversed by coculturing melanoma cells with Ccr2+ macrophages. Overall, this study demonstrates that the development of resistance may be directed by altering the tumor microenvironment to improve treatment timing and the probability of relapse. SIGNIFICANCE: Ccr2+ melanoma macrophages that are active in tumors during the drug-tolerant persister state following targeted therapy-induced regression are key contributors directing melanoma cell reprogramming toward specific therapeutic resistance trajectories.


Subject(s)
Melanoma , Neoplasm Recurrence, Local , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Immunotherapy , Macrophages/metabolism , Proto-Oncogene Proteins B-raf , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Tumor Microenvironment
7.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187565

ABSTRACT

Melanocyte stem cells (McSCs) of the hair follicle are a rare cell population within the skin and are notably underrepresented in whole-skin, single-cell RNA sequencing (scRNA-seq) datasets. Using a cell enrichment strategy to isolate KIT+/CD45-cells from the telogen skin of adult female C57BL/6J mice, we evaluated the transcriptional landscape of quiescent McSCs (qMcSCs) at high resolution. Through this evaluation, we confirmed existing molecular signatures for qMcCS subpopulations (e.g., Kit+, Cd34+/- , Plp1+, Cd274+/-, Thy1+, Cdh3+/- ) and identified novel qMcSC subpopulations, including two that differentially regulate their immune privilege status. Within qMcSC subpopulations, we also predicted melanocyte differentiation potential, neural crest potential, and quiescence depth. Taken together, the results demonstrate that the qMcSC population is heterogenous and future studies focused on investigating changes in qMcSCs should consider changes in subpopulation composition. Significance: Single cell transcriptomics has revolutionized our ability to interrogate the dynamic nature of tissues. Here we provide a high-resolution map of the melanocyte stem cell population during quiescence. This map provides one of few examples highlighting broad heterogeneity in stem cells during the quiescent cell state. The map also unifies previous observations using other cell, molecular and functional analyses to define the unique features of the quiescent melanocyte stem cell population. This data provides a valuable resource to individuals interested in further evaluating aspects of cellular quiescence in stem cells broadly or melanocyte stem cells specifically.

8.
J Vis Exp ; (148)2019 06 07.
Article in English | MEDLINE | ID: mdl-31233013

ABSTRACT

Cutaneous melanoma is well known as the most aggressive skin cancer. Although the risk factors and major genetic alterations continue to be documented with increasing depth, the incidence rate of cutaneous melanoma has shown a rapid and continuous increase during recent decades. In order to find effective preventative methods, it is important to understand the early steps of melanoma initiation in the skin. Previous data has demonstrated that follicular melanocyte stem cells (MCSCs) in the adult skin tissues can act as melanoma cells of origin when expressing oncogenic mutations and genetic alterations. Tumorigenesis arising from melanoma-prone MCSCs can be induced when MCSCs transition from a quiescent to active state. This transition in melanoma-prone MCSCs can be promoted by the modulation of either hair follicle stem cells' activity state or through extrinsic environmental factors such as ultraviolet-B (UV-B). These factors can be artificially manipulated in the laboratory by chemical depilation, which causes transition of hair follicle stem cells and MCSCs from a quiescent to active state, and by UV-B exposure using a benchtop light. These methods provide successful spatial and temporal control of cutaneous melanoma initiation in the murine dorsal skin. Therefore, these in vivo model systems will be valuable to define the early steps of cutaneous melanoma initiation and could be used to test potential methods for tumor prevention.


Subject(s)
Melanocytes/pathology , Melanoma/genetics , Melanoma/pathology , Mutation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Animals , Carcinogenesis , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Melanocytes/metabolism , Mice , Skin/pathology , Spatio-Temporal Analysis , Melanoma, Cutaneous Malignant
9.
Elife ; 72018 06 25.
Article in English | MEDLINE | ID: mdl-29939130

ABSTRACT

Maintenance of transcription programs is challenged during mitosis when chromatin becomes condensed and transcription is silenced. How do the daughter cells re-establish the original transcription program? Here, we report that the TATA-binding protein (TBP), a key component of the core transcriptional machinery, remains bound globally to active promoters in mouse embryonic stem cells during mitosis. Using live-cell single-molecule imaging, we observed that TBP mitotic binding is highly stable, with an average residence time of minutes, in stark contrast to typical TFs with residence times of seconds. To test the functional effect of mitotic TBP binding, we used a drug-inducible degron system and found that TBP promotes the association of RNA Polymerase II with mitotic chromosomes, and facilitates transcriptional reactivation following mitosis. These results suggest that the core transcriptional machinery promotes efficient transcription maintenance globally.


Subject(s)
Chromosomes/chemistry , Mitosis , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , TATA-Box Binding Protein/genetics , Transcriptional Activation , Animals , Cell Line , Chromosomes/metabolism , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Flavonoids/pharmacology , Mice , Mitosis/drug effects , Molecular Imaging , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Phenanthrenes/pharmacology , Piperidines/pharmacology , Promoter Regions, Genetic , Protein Binding/drug effects , RNA Polymerase II/metabolism , Single-Cell Analysis , TATA-Box Binding Protein/metabolism
10.
Elife ; 52016 11 19.
Article in English | MEDLINE | ID: mdl-27855781

ABSTRACT

During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking.


Subject(s)
Chromosomes/chemistry , Mitosis , Mouse Embryonic Stem Cells/physiology , Transcription Factors/analysis , Animals , Cells, Cultured , Mice , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...