Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 394: 130307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199442

ABSTRACT

Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.


Subject(s)
Composting , Soil , Bacteria , Firmicutes , Manure
2.
Appl Biochem Biotechnol ; 194(4): 1479-1495, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34748150

ABSTRACT

Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.


Subject(s)
Composting , Microbiota , Bacteria/metabolism , Bacteroidetes/metabolism , Edible Grain/metabolism , Manure , Nitrogen/metabolism , Soil
3.
Bioresour Technol ; 345: 126486, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34871724

ABSTRACT

This study evaluated the dynamics of physicochemical characteristics and bacterial communities during the co-composting of distilled grain waste (DGW) and distillery sewage sludge (SS), with DGW mono-composting as a control. Results showed that co-composting with SS significantly improved DGW degradation efficiency (61.38% vs. 54.13%) and end-product quality (seed germination index: 129.82% vs. 113.61%; N + P2O5 + K2O: 9.08% vs. 5.28%), compared to DGW mono-composting. Microbial community analysis revealed that co-composting accelerated the bacterial community succession rate and enhanced the abundance of the phyla Proteobacteria, Firmicutes, Chloroflexi, and Deinococcota by 45.86%, 4.38%, 37.49%, and 15.29%, respectively. Network analysis showed that DGW-SS co-composting altered the interactions among the bacterial genera and improved bacterial community stability. Spearman correlation analysis indicated that the correlation between bacterial genera and environmental factors was more significant in DGW-SS co-composting. Therefore, co-composting of DGW and SS is a suitable strategy for the treatment of solid byproducts from spirit distilleries.


Subject(s)
Composting , Microbiota , Edible Grain , Sewage , Soil
4.
Biotechnol Lett ; 33(7): 1367-74, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21380777

ABSTRACT

The effect of overexpression of the trehalose-6-phosphate (T6P) synthase gene (TPS1) on ethanol fermentation of Saccharomyces cerevisiae has been studied at 30 and 38°C. The activity of T6P synthase and the accumulation of trehalose during ethanol fermentation were significantly improved by overexpression of TPS1, and especially at 38°C. Ethanol produced by transformants with and without TPS1 gene overexpression at 38°C was approx. 60 and 37 g/l, respectively. The fermentation efficiency of transformants with TPS1 gene overexpression at 38°C was similar to that at 30°C. The critical growth temperature was increased from 36 to 42°C by TPS1 gene overexpression. These results indicated that overexpression of the TPS1 gene had a beneficial effect on the fermentation capacity of the title yeast strain at high temperatures.


Subject(s)
Ethanol/metabolism , Gene Expression , Glucosyltransferases/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/radiation effects , Fermentation , Glucosyltransferases/genetics , Saccharomyces cerevisiae/growth & development , Temperature , Trehalose/metabolism
5.
J Biosci Bioeng ; 109(1): 41-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20129080

ABSTRACT

Waste molasses is one of the most important feedstock for ethanol production in Brazil as well as in many Southeast Asian countries, including China. Sulfuric acid pretreatment is employed in most ethanol distilleries in China to control bacterial contamination, which results in difficulties in the treatment of wastewater containing high levels of sulfate ions. In this study, a high efficiency, non-sterilized, continuous ethanol fermentation process without sulfuric acid pretreatment was developed using the flocculating yeast strain KF-7 and the widely utilized, traditional, stirred tank reactors. An alternative molasses medium feeding method, which differs from traditional methods, is proposed that effectively controls bacterial contamination. Separate feeding of 1.2-fold diluted molasses and tap water into the reactor proved to be effective against bacterial contamination during long-term continuous fermentation. By feeding yeast cells with high metabolic activity to the second reactor, a two-stage continuous fermentation process that yielded a high ethanol concentration of 80 g/l as well as high ethanol productivity of 6.6 g/l/h was successfully operated for more than one month. This fermentation process can be applied to ethanol distilleries in which traditional tank reactors are used.


Subject(s)
Bioreactors , Ethanol/metabolism , Fermentation , Industrial Microbiology/methods , Molasses , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism
6.
J Biosci Bioeng ; 108(6): 508-12, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19914584

ABSTRACT

A two-stage fermentation process, consisting of a simultaneous saccharification and fermentation (SSF) stage and a dry methane fermentation stage, was developed to utilize garbage for the production of fuel ethanol and methane. Garbage from families, canteens and concessionaires was used for the study. Saccharification method was studied and the results indicated that the liquefaction pretreatment and the combination of cellulase and glucoamylase was effective for polysaccharide hydrolysis of family garbage with a high content of holocellulose and that SSF was suitable for ethanol fermentation of garbage. Ethanol productivity could be markedly increased from 1.7 to 7.0 g/l/h by repeated-batch SSF of family garbage. A high ethanol productivity of 17.7 g/l/h was achieved when canteen garbage was used. The stillage after distillation was treated by dry methane fermentation and the results indicated that the stillage was almost fully digested and that about 850 ml of biogas was recovered from 1 g of volatile total solid (VTS). Approximately 85% of the energy of the garbage was converted to fuels, ethanol and methane by this process.


Subject(s)
Biofuels , Ethanol/metabolism , Fermentation , Garbage , Methane/metabolism , Refuse Disposal/methods , Biotechnology/economics , Biotechnology/methods , Cellulase/economics , Cellulase/metabolism , Conservation of Natural Resources/economics , Distillation , Ethanol/economics , Fresh Water , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose/metabolism , Hydrolysis , Industrial Microbiology/economics , Models, Biological , Refuse Disposal/economics , Saccharomyces cerevisiae/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...