Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Front Pharmacol ; 15: 1421635, 2024.
Article in English | MEDLINE | ID: mdl-39148543

ABSTRACT

Introduction: Angong Niuhuang Wan (AGNHW), developed during the Qing dynasty (18th century) for the treatment of consciousness disturbances caused by severe infections, has been used to treat brain edema caused by ischemia‒reperfusion. However, it remains unclear whether AGNHW can ameliorate vascular-origin brain edema caused by lipopolysaccharides (LPS). This study explored the ameliorative effects of AGNHW on LPS-induced cerebrovascular edema in mice, as well as the potential underlying mechanisms. Methods: A cerebrovascular edema model was established in male C57BL/6N mice by two intraperitoneal injections of LPS (15 mg/kg), at 0 and 24 h. AGNHW was administered by gavage at doses of 0.2275 g/kg, 0.455 g/kg, and 0.91 g/kg, 2 h after LPS administration. In control mice, normal saline (NS) or AGNHW (0.455 g/kg) was administered by gavage 2 h after intraperitoneal injection of NS. The survival rate, cerebral water content, cerebral venous FITC-dextran leakage, Evans blue extravasation, and expression of vascular endothelial cadherin (VE-cadherin), zonula occludens-1 (ZO-1), claudin-5, phosphorylated caveolin-1 (CAV-1), and cytomembrane and cytoplasmic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) were evaluated. The cerebral tissue phosphoproteome, blood levels of AGNHW metabolites, and the relationships between these blood metabolites and differentially phosphorylated proteins were analyzed. Results: AGNHW inhibited the LPS-induced decrease in survival rate, increase in cerebral water content, decrease in VE-Cadherin expression and increase in phosphorylated CAV-1 (P-CAV-1). AGNHW treatment increased the expression of AQP4 on astrocyte membrane after LPS injection. AGNHW also inhibited the LPS-induced increases in the phosphorylation of 21 proteins, including protein kinase C-α (PKC-α) and mitogen-activated protein kinase 1 (MAPK1), in the cerebral tissue. Eleven AGNHW metabolites were detected in the blood. These metabolites might exert therapeutic effects by regulating PKC-α and MAPK1. Conclusion: AGNHW can ameliorate cerebrovascular edema caused by LPS. This effect is associated with the inhibition of VE-Cadherin reduction and CAV-1 phosphorylation, as well as the upregulation of AQP4 expression on the astrocyte membrane, following LPS injection.

2.
BMC Musculoskelet Disord ; 25(1): 561, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030590

ABSTRACT

BACKGROUND: Tendons are important dense fibrous structures connecting muscle to bone, and tendon stem cells (TDSCs) affect their repair and regeneration. The role of TDSC-derived exosomes (TDSC-Exos) is still being unexplored; therefore, this study aimed to investigate the protective effect of TDSC-Exos on tenocytes. METHODS: The TDSCs and tenocytes were all derived from Sprague Dawley (SD) rats. The expression of positive and negative markers of TDSCs were detected by flow cytometry, and the multi-differentiation ability was also detected to identify TDSCs. Exos were derived from TDSCs using ultracentrifugation; furthermore, Exos enriched with microRNA(miR)-377-3p were generated from TDSCs stably overexpressing miR-377-3p after transfection, identified with transmission electron microscopy (TEM), western blot and PKH26 staining assay. Moreover, the cell functions of tenocytes were evaluated by MTT, EdU, transwell, and flow cytometry. Dual luciferase reporter and RNA pull-down assays were used to verify the binding sites of miR-337-3p and caspase3 (CASP3) predicted by Targetscan. RESULTS: Exos (miR-337-3p) were taken up by tenocytes, and promoted the proliferation, migration, and invasion and suppressed the apoptosis of tenocytes in a dose-dependent manner. Bioinformatics analysis showed that CASP3 was a target of miR-377-3p, which was further verified by luciferase and RNA pull-down assays. Moreover, over-expressed CASP3 reversed the effects of Exos (miR-337-3p) on cell functions of tenocytes. CONCLUSIONS: Our findings suggest that Exos derived from miR-337-3p over-expressing TDSCs could potentially protect against tenocyte apoptosis by regulating CASP3. This novel therapeutic approach holds promise for the treatment of tendon injury, offering a glimmer of hope for improved patient outcomes.


Subject(s)
Apoptosis , Caspase 3 , Exosomes , MicroRNAs , Rats, Sprague-Dawley , Stem Cells , Tendons , Tenocytes , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , Apoptosis/physiology , Rats , Caspase 3/metabolism , Caspase 3/genetics , Tenocytes/metabolism , Stem Cells/metabolism , Tendons/metabolism , Tendons/cytology , Cell Proliferation/physiology , Cells, Cultured , Male , Tendon Injuries/genetics , Tendon Injuries/metabolism , Tendon Injuries/pathology , Cell Movement
3.
Exp Gerontol ; 194: 112509, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964429

ABSTRACT

Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1ß, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1ß (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.


Subject(s)
Antioxidants , Dietary Supplements , Disease Models, Animal , Oxidative Stress , Rotenone , Zebrafish , Animals , Antioxidants/pharmacology , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Behavior, Animal/drug effects , Wine , Male , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Viruses ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932174

ABSTRACT

Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.


Subject(s)
Host Adaptation , Influenza A virus , Influenza, Human , Humans , Influenza, Human/transmission , Influenza, Human/virology , Influenza, Human/epidemiology , Animals , Influenza A virus/genetics , Influenza A virus/physiology , Influenza in Birds/transmission , Influenza in Birds/virology , Birds/virology , Pandemics
5.
Virus Genes ; 60(3): 320-324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722491

ABSTRACT

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.


Subject(s)
Animals, Wild , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Influenza in Birds/virology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Evolution, Molecular , Genome, Viral/genetics , Neuraminidase/genetics , Viral Proteins/genetics
6.
Sci Rep ; 14(1): 6130, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480822

ABSTRACT

Cell bionic culture requires the construction of cell growth microenvironments. In this paper, mechanical force and electrical stimulations are applied to the cells cultured on the surface of the piezoelectric laminated micro-beam driven by an excitation voltage. Based on the extended dielectric theory, the electromechanical microenvironment regulating model of the current piezoelectric laminated micro-beam is established. The variational principle is used to obtain the governing equations and boundary conditions. The differential quadrature method and the iterative method are used to solve two boundary value problems for cantilever beams and simply supported beams. In two cases, the mechanical force and electrical stimulations applied to the cells are analyzed in detail and the microscale effect is investigated. This study is meaningful for improving the quality of cell culture and promoting the cross-integration of mechanics and biomedicine.


Subject(s)
Bionics , Micro-Electrical-Mechanical Systems , Cell Culture Techniques
7.
Comput Biol Med ; 169: 107777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104516

ABSTRACT

The identification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Medical image data mainly include electronic health record data and gene information data, etc. Although intelligent imaging provided a good scheme for medical image analysis over traditional methods that rely on the handcrafted features, it remains challenging due to the diversity of imaging modalities and clinical pathologies. Many medical image identification methods provide a good scheme for medical image analysis. The concepts pertinent of methods, such as the machine learning, deep learning, convolutional neural networks, transfer learning, and other image processing technologies for medical image are analyzed and summarized in this paper. We reviewed these recent studies to provide a comprehensive overview of applying these methods in various medical image analysis tasks, such as object detection, image classification, image registration, segmentation, and other tasks. Especially, we emphasized the latest progress and contributions of different methods in medical image analysis, which are summarized base on different application scenarios, including classification, segmentation, detection, and image registration. In addition, the applications of different methods are summarized in different application area, such as pulmonary, brain, digital pathology, brain, skin, lung, renal, breast, neuromyelitis, vertebrae, and musculoskeletal, etc. Critical discussion of open challenges and directions for future research are finally summarized. Especially, excellent algorithms in computer vision, natural language processing, and unmanned driving will be applied to medical image recognition in the future.


Subject(s)
Diagnostic Imaging , Neural Networks, Computer , Diagnostic Imaging/methods , Algorithms , Image Processing, Computer-Assisted/methods , Machine Learning
8.
Environ Sci Pollut Res Int ; 30(58): 122611-122624, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37971593

ABSTRACT

Phenol is one of the important ingredients of pyrolysis oil, contributing to the high biotoxicity of pyrolysis oil. To promote the degradation and conversion of phenol during anaerobic digestion, cheap hydro-chars with high phenol adsorption capacity were produced. The phenol adsorption capabilities of the plain hydro-char, plasma modified hydro-char at 25 °C (HC-NH3-P-25) and 500 °C (HC-NH3-P-500) were evaluated, and their adsorption kinetics and thermodynamics were explored. Experimental results indicate that the phenol adsorption capability of HC-NH3-P-500 was the highest. The phenol adsorption kinetics of all samples followed the pseudo-second-order equation and interparticle diffusion model, indicating that the adsorption rate of phenol was controlled by interparticle diffusion and chemistry adsorption simultaneously. By DFT calculations, π-π stacking and hydrogen bond are the main interactions for phenol adsorption. It was observed that an enriched graphite N content decreased the average vertical distance between hydro-chars and phenol in π-π stacking complex, from 3.5120 to 3.4532 Å, causing an increase in the negative adsorption energy between phenol and hydro-char from 13.9330 to 23.4181 kJ/mol. For hydrogen bond complex, the average vertical distance decreased from 3.4885 to 3.3386 Å due to the increase in graphite N content; causing the corresponding negative adsorption energy increased from 19.0233 to 19.9517 kJ/mol. Additionally, the presence of graphite N in the hydro-char created a positive diffusion region and enhanced the electron density between hydro-char and phenol. Analyses suggest that enriched graphite N contributed to the adsorption complex stability, resulting in an improved phenol adsorption capacity.


Subject(s)
Graphite , Phenol , Phenol/chemistry , Charcoal/chemistry , Adsorption , Pyrolysis , Phenols , Kinetics
9.
Science ; 382(6669): 458-464, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37883537

ABSTRACT

Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.

10.
Int J Biol Macromol ; 253(Pt 7): 127368, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838129

ABSTRACT

Recyclable, non-toxic, and degradable biological substrates contribute significantly to super-wetting surfaces. In this work, we prepared magnetic micro-nano super-hydrophobic surfaces through a robust solution with magnetic modified lignin particles as the supporting structure. A novel PDMS (polydimethylsiloxane)/magnetic lignin particle (lignin@Fe3O4)/PDA sponge composite was fabricated. Through dopamine (DA) self-polymerization, covalent deposition of magnetic lignin (ML), and PDMS silane modification, the magnetic super-hydrophobic polyurethane sponge composite (Sponge-P) was synthesized so that the Fe3O4 nanoscale microspheres wrapped with microscale lignin magnetic particles adhered to the sponge surface tighter and were barely dislodged. The as-prepared Sponge-P displayed excellent flexibility and a water contact angle of up to 152.2°. The super-hydrophobic sponge prepared with the proposed method was acid-base stable (pH = 2-12), self-cleaning, and suitable for high-salinity seawater. The magnetic super-hydrophobic sponge has good oil-water separation ability and can absorb 43 times its own weight of oil. In the meantime, due to the introduction of magnetic materials into lignin, we not only constructed micro-nanostructures to improve the surface super-hydrophobicity, but also made Sponge-P have the function of magnetic recovery, which has a unique advantage in treating oily wastewater.


Subject(s)
Bandages , Lignin , Physical Phenomena , Dopamine , Magnetic Phenomena
11.
Bioresour Technol ; 388: 129745, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690489

ABSTRACT

Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups. Additionally, biochar could adsorb impurities such as CO2, moisture, and H2S to upgrade the biogas. Customizing pyrolysis treatments, optimizing the feedstock and pyrolysis operating conditions enhance biochar production and improve its surface properties for the emerging applications. Life cycle assessment and techno-economic assessment indicated the benefits of replacing conventional activated carbon with biochar.

12.
Sensors (Basel) ; 23(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447673

ABSTRACT

Safety helmets are essential in various indoor and outdoor workplaces, such as metallurgical high-temperature operations and high-rise building construction, to avoid injuries and ensure safety in production. However, manual supervision is costly and prone to lack of enforcement and interference from other human factors. Moreover, small target object detection frequently lacks precision. Improving safety helmets based on the helmet detection algorithm can address these issues and is a promising approach. In this study, we proposed a modified version of the YOLOv5s network, a lightweight deep learning-based object identification network model. The proposed model extends the YOLOv5s network model and enhances its performance by recalculating the prediction frames, utilizing the IoU metric for clustering, and modifying the anchor frames with the K-means++ method. The global attention mechanism (GAM) and the convolutional block attention module (CBAM) were added to the YOLOv5s network to improve its backbone and neck networks. By minimizing information feature loss and enhancing the representation of global interactions, these attention processes enhance deep learning neural networks' capacity for feature extraction. Furthermore, the CBAM is integrated into the CSP module to improve target feature extraction while minimizing computation for model operation. In order to significantly increase the efficiency and precision of the prediction box regression, the proposed model additionally makes use of the most recent SIoU (SCYLLA-IoU LOSS) as the bounding box loss function. Based on the improved YOLOv5s model, knowledge distillation technology is leveraged to realize the light weight of the network model, thereby reducing the computational workload of the model and improving the detection speed to meet the needs of real-time monitoring. The experimental results demonstrate that the proposed model outperforms the original YOLOv5s network model in terms of accuracy (Precision), recall rate (Recall), and mean average precision (mAP). The proposed model may more effectively identify helmet use in low-light situations and at a variety of distances.


Subject(s)
Algorithms , Head Protective Devices , Humans , Cluster Analysis , Neural Networks, Computer
13.
One Health ; 16: 100515, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363234

ABSTRACT

H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic avian species worldwide and have occasionally crossed the species barrier to mammalian hosts. Fatal human cases of H10N8 infections and the recent detection of human H10N3 infections have drawn widespread public attention. In this study, 25 H10Nx viruses were isolated from wild waterfowl in China during a long-term surveillance of AIVs. We conducted phylogenetic and phylogeographic studies of the hemagglutinin (HA) genes of global H10 viruses to determine the spatiotemporal patterns of spread and the roles of different hosts in viral transmission. We found the pattern of AIV transmission from wild birds to poultry to humans, and Anatidae have acted as the seeding population in the spread of the virus. Phylogenetic incongruence indicated complex reassortment events and our isolates were divided into eight genotypes (G1-8). We also found that the HA genes of the G8 viruses belonged to the North American lineage, indicating that intercontinental gene flow has occurred. Their receptor-binding specificity showed that the G1/4/5/6/7/8 viruses bind to both human-type α2,6-linked sialic acid receptors and avian-type α2,3-linked sialic acid receptors. Mouse studies indicated that the H10Nx isolates replicated efficiently in the respiratory system without preadaptation, but showed low pathogenicity in mice. The H10Nx isolates showed no (G2/4/7) or low pathogenicity (G1/3/5/6/8) in chickens, and the G6 and G8 viruses could be transmitted to chickens through direct contact. The asymptomatic shedding of these wild-bird-origin H10Nx isolates in chickens and their good adaptation in mice should increase the ease of their transmission to humans, and they therefore pose a threat to public health. Our findings demonstrate a further understanding of wild bird-origin H10 viruses and provide information for the continuous surveillance of H10 subtype viruses.

14.
Chem Sci ; 14(25): 6841-6859, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37389263

ABSTRACT

The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.

15.
Sci Total Environ ; 883: 163403, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37059147

ABSTRACT

Drought is a prolonged dry period in the natural climate cycle, and is one of the most costly weather events. The Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage anomalies (TWSA) have been widely used to assess drought severity. However, the relatively short cover period of GRACE and GRACE Follow-On limit our knowledge about the characterization and evolution of drought over decades time scale. This study proposes a standardized GRACE reconstructed TWSA index (SGRTI) to assess the drought severity based on a statistical reconstruction method calibrated by GRACE observations. Results show that the SGRTI correlates well with 6-month scale SPI and SPEI, with correlation coefficients reaching 0.79 and 0.81 in the YRB from 1981 to 2019. Soil moisture can capture drought condition like the SGRTI, while cannot further reflect deeper water storage depletion. The SGRTI is also comparable to the SRI and in-situ water level. As a case study for the Yangtze River Basin, its three sub-basins experience more frequent droughts, shorter drought duration, and lower severity drought, as identified by SGRTI during 1992-2019 relative to 1963-1991. The presented SGRTI in this study can provide a valuable supplement to the drought index before the GRACE era.

16.
Phys Rev E ; 107(2-1): 024218, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932477

ABSTRACT

We study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics. The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically. When the gauge field is less than the threshold, the system is stable, and the gauge field induces chiral dynamics of the wave packet. When the gauge field is greater than the threshold, the system is unstable, and the ground-state wave packet will be deformed and fragmented. Interestingly, we find that as the gauge field approaches the threshold, strong dipolar and breathing dynamics take place, and strong modes mixing occurs, the instability of the system sets in. In addition, we show that the stability of the system can be well controlled by periodical modulation of the trapping potential. We provide theoretical evidence to understand and control the irregular dynamics associated with chiral superfluid induced by density-dependent gauge field.

17.
Adv Mater ; 35(26): e2300659, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36942913

ABSTRACT

Traditional honeycomb-like structural electromagnetic (EM)-wave-absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM-wave-absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM-wave-absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings. A matching redesign methodology between the material and subwavelength scale properties of the gyroid microstructure is proposed, inspired by the interaction mechanism between the microstructure and the material properties on the EM-wave-absorption performance of the prepared metastructure. The bioinspired metastructure is fabricated by additive manufacturing (AM) and subsequent coating through dipping processes, filled with dielectric lossy materials. Based on simulations and experiments, the metastructure designed in this work exhibits an ultrawide absorption bandwidth covering the frequency range of 2-40 GHz with a fractional bandwidth of 180% at normal incidence. Moreover, the metastructure has a stable frequency response when the incident angle is 60° under transverse electric (TE) and transverse magnetic (TM) polarization. Finally, the synergistic mechanism between the microstructure and the material is elucidated, which provides a new paradigm for the design of novel ultra-broadband EM-absorbing materials.

18.
Chem Commun (Camb) ; 59(27): 4055-4058, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36929170

ABSTRACT

A synergistic photocatalytic system using a bisphosphonium catalyst and a cobalt catalyst has been developed, enabling the selective oxidation of benzylic alcohols under oxidant-free and environmentally benign conditions. High efficiencies have been obtained for a variety of alcohol substrates, and exclusive selectivity for aldehyde products has been achieved across the board. Furthermore, this photocatalytic system proved to be efficient when performed under continuous-flow conditions, even using a simple and easily assembled continuous-flow setup.

19.
Mol Ecol ; 32(7): 1639-1655, 2023 04.
Article in English | MEDLINE | ID: mdl-36626136

ABSTRACT

Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.


Subject(s)
Climate Change , Quercus , Trees , Forests , Genome-Wide Association Study , Genomics , Quercus/genetics , Trees/genetics
20.
J Am Chem Soc ; 145(1): 359-376, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36538367

ABSTRACT

The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals.


Subject(s)
Chlorine , Hydrogen , Hydrogen/chemistry , Kinetics , Ligands , Metals , Ethanol , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL