Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 811630, 2022.
Article in English | MEDLINE | ID: mdl-35422823

ABSTRACT

How to non-destructively and quickly estimate the storage time of citrus fruit is necessary and urgent for freshness control in the fruit market. As a feasibility study, we present a non-destructive method for storage time prediction of Newhall navel oranges by investigating the characteristics of the rind oil glands in this paper. Through the observation using a digital microscope, the oil glands were divided into three types and the change of their proportions could indicate the rind status as well as the storage time. Images of the rind of the oranges were taken in intervals of 10 days for 40 days, and they were used to train and test the proposed prediction models based on K-Nearest Neighbors (KNN) and deep learning algorithms, respectively. The KNN-based model demonstrated explicit features for storage time prediction based on the gland characteristics and reached a high accuracy of 93.0%, and the deep learning-based model attained an even higher accuracy of 96.0% due to its strong adaptability and robustness. The workflow presented can be readily replicated to develop non-destructive methods to predict the storage time of other types of citrus fruit with similar oil gland characteristics in different storage conditions featuring high efficiency and accuracy.

2.
Front Plant Sci ; 12: 622062, 2021.
Article in English | MEDLINE | ID: mdl-33643351

ABSTRACT

Defective citrus fruits are manually sorted at the moment, which is a time-consuming and cost-expensive process with unsatisfactory accuracy. In this paper, we introduce a deep learning-based vision system implemented on a citrus processing line for fast on-line sorting. For the citrus fruits rotating randomly on the conveyor, a convolutional neural network-based detector was developed to detect and temporarily classify the defective ones, and a SORT algorithm-based tracker was adopted to record the classification information along their paths. The true categories of the citrus fruits were identified through the tracked historical information, resulting in high detection precision of 93.6%. Moreover, the linear Kalman filter model was applied to predict the future path of the fruits, which can be used to guide the robot arms to pick out the defective ones. Ultimately, this research presents a practical solution to realize on-line citrus sorting featuring low costs, high efficiency, and accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...