Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Haematologica ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961734

ABSTRACT

Generation of mammalian red blood cells requires the expulsion of polarized nuclei late in terminal erythroid differentiation. However, the mechanisms by which spherical erythroblasts determine the direction of nuclear polarization and maintain asymmetry during nuclear expulsion are poorly understood. Given the analogy of erythroblast enucleation to asymmetric cell division and the key role of Aurora kinases in mitosis, we sought to investigate the function of Aurora kinases in erythroblast enucleation. We found that AURKA (Aurora kinase A) is abundantly expressed in orthochromatic erythroblasts. Intriguingly, high-resolution confocal microscopy analyses revealed that AURKA co-localized with the centrosome on the side of the nucleus opposite its membrane contact point during polarization and subsequently translocated to the anterior end of the protrusive nucleus upon nuclear exit. Mechanistically, AURKA regulated centrosome maturation and localization via interaction with i-tubulin to provide polarization orientation for the nucleus. Furthermore, we identified ECT2 (epithelial cell transforming 2), a guanine nucleotide exchange factor, as a new interacting protein and ubiquitination substrate of AURKA. After forming the nuclear protrusion, AURKA translocated to the anterior end of the protrusive nucleus to directly degrade ECT2, which is partly dependent on kinase activity of AURKA. Moreover, knockdown of ECT2 rescued impaired enucleation caused by AURKA inhibition. Our findings have uncovered a previously unrecognized role of Aurora kinases in the establishment of nuclear polarization and eventual nuclear extrusion and provide new mechanistic insights into erythroblast enucleation.

2.
Cells ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38995000

ABSTRACT

Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.


Subject(s)
Bone Marrow , Erythropoiesis , Fetus , Liver , Transcriptome , Animals , Erythropoiesis/genetics , Mice , Liver/metabolism , Liver/embryology , Liver/cytology , Transcriptome/genetics , Fetus/metabolism , Fetus/cytology , Bone Marrow/metabolism , Mice, Inbred C57BL , Gene Expression Regulation, Developmental , Female , Erythroid Precursor Cells/metabolism , Erythroid Precursor Cells/cytology
3.
Cell Death Differ ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719927

ABSTRACT

The dynamic balance of DNA methylation and demethylation is required for erythropoiesis. Our previous transcriptomic analyses revealed that DNA methyltransferase 1 (DNMT1) is abundantly expressed in erythroid cells at all developmental stages. However, the role and molecular mechanisms of DNMT1 in human erythropoiesis remain unknown. Here we found that DNMT1 deficiency led to cell cycle arrest of erythroid progenitors which was partially rescued by treatment with a p21 inhibitor UC2288. Mechanically, this is due to decreased DNA methylation of p21 promoter, leading to upregulation of p21 expression. In contrast, DNMT1 deficiency led to increased apoptosis during terminal stage by inducing endoplasmic reticulum (ER) stress in a p21 independent manner. ER stress was attributed to the upregulation of RPL15 expression due to the decreased DNA methylation at RPL15 promoter. The upregulated RPL15 expression subsequently caused a significant upregulation of core ribosomal proteins (RPs) and thus ultimately activated all branches of unfolded protein response (UPR) leading to the excessive ER stress, suggesting a role of DNMT1 in maintaining protein homeostasis during terminal erythroid differentiation. Furthermore, the increased apoptosis was significantly rescued by the treatment of ER stress inhibitor TUDCA. Our findings demonstrate the stage-specific role of DNMT1 in regulating human erythropoiesis and provide new insights into regulation of human erythropoiesis.

4.
J Med Chem ; 67(4): 2349-2368, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38299539

ABSTRACT

ATR is a key kinase in the DNA-damage response (DDR) that is synthetic lethal with several other DDR proteins, making it an attractive target for the treatment of genetically selected solid tumors. Herein we describe the discovery of a novel ATR inhibitor guided by a pharmacophore model to position a key hydrogen bond. Optimization was driven by potency and selectivity over the related kinase mTOR, resulting in the identification of camonsertib (RP-3500) with high potency and excellent ADME properties. Preclinical evaluation focused on the impact of camonsertib on myelosuppression, and an exploration of intermittent dosing schedules to allow recovery of the erythroid compartment and mitigate anemia. Camonsertib is currently undergoing clinical evaluation both as a single agent and in combination with talazoparib, olaparib, niraparib, lunresertib, or gemcitabine (NCT04497116, NCT04972110, NCT04855656). A preliminary recommended phase 2 dose for monotherapy was identified as 160 mg QD given 3 days/week.


Subject(s)
Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Gemcitabine
5.
J Stroke Cerebrovasc Dis ; 33(5): 107668, 2024 May.
Article in English | MEDLINE | ID: mdl-38423151

ABSTRACT

BACKGROUND: Stroke is a major cause of death and severe disability, and there remains a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke (IS) to protect the brain against damage before and during recanalization. Caveolin-1 (CAV1), an integrated protein that is located at the caveolar membrane, has been reported to exert neuroprotective effects during IS. Nevertheless, the mechanism remains largely unknown. Here, we explored the upstream modifiers of CAV1 in IS. METHODS: E3 ubiquitin ligases of CAV1 that are differentially expressed in IS were screened using multiple databases. The transcription factor responsible for the dysregulation of E3 ubiquitin-protein ligase synoviolin (SYVN1) in IS was predicted and verified. Genetic manipulations by lentiviral vectors were applied to investigate the effects of double-strand-break repair protein rad21 homolog (RAD21), SYVN1, and CAV1 in a middle cerebral artery occlusion (MCAO) mouse model and mouse HT22 hippocampal neurons induced by oxygen-glucose deprivation (OGD). RESULTS: SYVN1 was highly expressed in mice with MCAO, and knockdown of SYVN1 alleviated IS injury in mice, as evidenced by limited infarction volume, the lower water content in the brain, and repressed apoptosis and inflammatory response. RAD21 inhibited the transcription of SYVN1, thereby reducing the ubiquitination modification of CAV1. Overexpression of RAD21 elicited a neuroprotective role as well in mice with MCAO and HT22 induced with OGD, which was overturned by SYVN1. CONCLUSION: Transcriptional repression of SYVN1 by RAD21 alleviates IS in mice by reducing ubiquitination modification of CAV1.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Ubiquitin-Protein Ligases , Animals , Mice , Apoptosis , Caveolin 1/genetics , Caveolin 1/metabolism , Infarction, Middle Cerebral Artery/genetics , Stroke/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
6.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38127913

ABSTRACT

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Subject(s)
Anemia, Sickle Cell , Erythropoiesis , Mice , Animals , Humans , Erythropoiesis/physiology , STAT5 Transcription Factor/metabolism , Hemolysis , Hemin/metabolism , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Anemia, Sickle Cell/complications
7.
Article in English | MEDLINE | ID: mdl-37657739

ABSTRACT

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and this up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.

8.
Elife ; 122023 08 14.
Article in English | MEDLINE | ID: mdl-37578340

ABSTRACT

Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, ß-thalassemia, polycythemia vera, and myelodysplastic syndromes.


Subject(s)
Erythropoiesis , beta-Thalassemia , Humans , Erythropoiesis/physiology , Erythrocytes/metabolism , Iron/metabolism , Hemoglobins
9.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37490346

ABSTRACT

Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD. We discovered that hemolysis stimulated CSF-1 production, partly by endothelial cells via Nrf2, promoting classical monocyte (CMo) differentiation into blood patrolling monocytes (PMo) in SCD mice. However, hemolysis also upregulated CCL-2 through IFN-I, inducing CMo transmigration and differentiation into tissue monocyte-derived macrophages. Blocking CMo transmigration by anti-P selectin antibody in SCD mice increased circulating PMo, corroborating that CMo-to-tissue macrophage differentiation occurs at the expense of CMo-to-blood PMo differentiation. We observed a positive correlation between plasma CSF-1/CCL-2 ratios and blood PMo levels in patients with SCD, underscoring the clinical significance of these two opposing factors in monocyte differentiation. Combined treatment with CSF-1 and anti-P selectin antibody more effectively increased PMo numbers and reduced stasis compared with single-agent therapies in SCD mice. Altogether, these data indicate that monocyte fates are regulated by the balance between two heme pathways, Nrf2/CSF-1 and IFN-I/CCL-2, and suggest that the CSF-1/CCL-2 ratio may present a diagnostic and therapeutic target in SCD.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Mice , Animals , Hemolysis , Monocytes/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/therapeutic use , Endothelial Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/drug therapy , Vascular Diseases/metabolism , Cell Differentiation , Selectins/metabolism , Selectins/therapeutic use
10.
Haematologica ; 108(9): 2487-2502, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37021526

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 (PRC2) that catalyzes H3K27 tri-methylation. Aberrant expression and loss-of-function mutations of EZH2 have been demonstrated to be tightly associated with the pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as myelodysplastic syndrome (MDS). However, the function and mechanism of EZH2 in human erythropoiesis still remains largely unknown. Here, we demonstrated that EZH2 regulates human erythropoiesis in a stage-specific, dual-function manner by catalyzing histone and non-histone methylation. During the early erythropoiesis, EZH2 deficiency caused cell cycle arrest in the G1 phase, which impaired cell growth and differentiation. Chromatin immunoprecipitation sequencing and RNA sequencing discovered that EZH2 knockdown caused a reduction of H3K27me3 and upregulation of cell cycle proteindependent kinase inhibitors. In contrast, EZH2 deficiency led to the generation of abnormal nuclear cells and impaired enucleation during the terminal erythropoiesis. Interestingly, EZH2 deficiency downregulated the methylation of HSP70 by directly interacting with HSP70. RNA-sequencing analysis revealed that the expression of AURKB was significantly downregulated in response to EZH2 deficiency. Furthermore, treatment with an AURKB inhibitor and small hairpin RNAmediated AURKB knockdown also led to nuclear malformation and decreased enucleation efficiency. These findings strongly suggest that EZH2 regulates terminal erythropoiesis through a HSP70 methylation-AURKB axis. Our findings have implications for improved understanding of ineffective erythropoiesis with EZH2 dysfunction.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Erythropoiesis , Histones , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Erythropoiesis/genetics , Histones/metabolism , Methylation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
11.
JAMA Netw Open ; 6(3): e231455, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36862407

ABSTRACT

Importance: Stroke is the leading cause of death in China. However, recent data about the up-to-date stroke burden in China are limited. Objective: To investigate the urban-rural disparity of stroke burden in the Chinese adult population, including prevalence, incidence, and mortality rate, and disparities between urban and rural populations. Design, Setting, and Participants: This cross-sectional study was based on a nationally representative survey that included 676 394 participants aged 40 years and older. It was conducted from July 2020 to December 2020 in 31 provinces in mainland China. Main Outcomes and Measures: Primary outcome was self-reported stroke verified by trained neurologists during a face-to-face interviews using a standardized protocol. Stroke incidence were assessed by defining first-ever strokes that occurred during 1 year preceding the survey. Strokes causing death that occurred during the 1 year preceding the survey were considered as death cases. Results: The study included 676 394 Chinese adults (395 122 [58.4%] females; mean [SD] age, 59.7 [11.0] years). In 2020, the weighted prevalence, incidence, and mortality rates of stroke in China were 2.6% (95% CI, 2.6%-2.6%), 505.2 (95% CI, 488.5-522.0) per 100 000 person-years, and 343.4 (95% CI, 329.6-357.2) per 100 000 person-years, respectively. It was estimated that among the Chinese population aged 40 years and older in 2020, there were 3.4 (95% CI, 3.3-3.6) million incident cases of stroke, 17.8 (95% CI, 17.5-18.0) million prevalent cases of stroke, and 2.3 (95% CI, 2.2-2.4) million deaths from stroke. Ischemic stroke constituted 15.5 (95% CI, 15.2-15.6) million (86.8%) of all incident strokes in 2020, while intracerebral hemorrhage constituted 2.1 (95% CI, 2.1-2.1) million (11.9%) and subarachnoid hemorrhage constituted 0.2 (95% CI, 0.2-0.2) million (1.3%). The prevalence of stroke was higher in urban than in rural areas (2.7% [95% CI, 2.6%-2.7%] vs 2.5% [95% CI, 2.5%-2.6%]; P = .02), but the incidence rate (485.5 [95% CI, 462.8-508.3] vs 520.8 [95% CI, 496.3-545.2] per 100 000 person-years; P < .001) and mortality rate (309.9 [95% CI, 291.7-328.1] vs 369.7 [95% CI, 349.1-390.3] per 100 000 person-years; P < .001) were lower in urban areas than in rural areas. In 2020, the leading risk factor for stroke was hypertension (OR, 3.20 [95% CI, 3.09-3.32]). Conclusions and Relevance: In a large, nationally representative sample of adults aged 40 years or older, the estimated prevalence, incidence, and mortality rate of stroke in China in 2020 were 2.6%, 505.2 per 100 000 person-years, and 343.4 per 100 000 person-years, respectively, indicating the need for an improved stroke prevention strategy in the general Chinese population.


Subject(s)
Ischemic Stroke , Stroke , Adult , Female , Humans , Middle Aged , Male , Cross-Sectional Studies , Stroke/epidemiology , Cerebral Hemorrhage , China/epidemiology
12.
Nucleic Acids Res ; 51(10): 4774-4790, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36929421

ABSTRACT

Normal erythropoiesis requires the precise regulation of gene expression patterns, and transcription cofactors play a vital role in this process. Deregulation of cofactors has emerged as a key mechanism contributing to erythroid disorders. Through gene expression profiling, we found HES6 as an abundant cofactor expressed at gene level during human erythropoiesis. HES6 physically interacted with GATA1 and influenced the interaction of GATA1 with FOG1. Knockdown of HES6 impaired human erythropoiesis by decreasing GATA1 expression. Chromatin immunoprecipitation and RNA sequencing revealed a rich set of HES6- and GATA1-co-regulated genes involved in erythroid-related pathways. We also discovered a positive feedback loop composed of HES6, GATA1 and STAT1 in the regulation of erythropoiesis. Notably, erythropoietin (EPO) stimulation led to up-regulation of these loop components. Increased expression levels of loop components were observed in CD34+ cells of polycythemia vera patients. Interference by either HES6 knockdown or inhibition of STAT1 activity suppressed proliferation of erythroid cells with the JAK2V617F mutation. We further explored the impact of HES6 on polycythemia vera phenotypes in mice. The identification of the HES6-GATA1 regulatory loop and its regulation by EPO provides novel insights into human erythropoiesis regulated by EPO/EPOR and a potential therapeutic target for the management of polycythemia vera.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Erythropoiesis , GATA1 Transcription Factor , Repressor Proteins , Animals , Humans , Mice , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythroid Cells/metabolism , GATA1 Transcription Factor/metabolism , Gene Expression Profiling , Polycythemia Vera/genetics , Polycythemia Vera/metabolism , Repressor Proteins/metabolism
13.
Blood ; 141(25): 3091-3108, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36952641

ABSTRACT

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid ß-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.


Subject(s)
Anemia, Sickle Cell , Heme , Humans , Heme/metabolism , Interleukin-4/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , PPAR gamma , Toll-Like Receptor 4/metabolism , Macrophages/metabolism , Anemia, Sickle Cell/metabolism , Inflammation/metabolism
14.
RSC Adv ; 13(12): 8173-8181, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36922945

ABSTRACT

The threat of global warming caused by greenhouse gases such as CO2 to the environment is one of the most intractable challenges. The capture and utilization of CO2 are essential to reduce its emission and achieve the goal of being carbon neutral, in which CO2-diluted combustion is an efficient carbon capture technology. In this research, the effects of CO2 addition in the fuel side (CO2-F), oxidizer side (CO2-O) and both sides (CO2-F/O) on temperature and soot formation in C2H4/air laminar co-flow diffusion flames were researched. The flame images were measured by a complementary metal-oxide-semiconductor (CMOS) imaging equipment. The two-dimensional distributions of temperature and soot volume fraction in C2H4/air laminar co-flow diffusion flames were measured employing the inverse Abel transform. The results demonstrated that the effect of amount variation of CO2-F on the decrease of flame temperature was enhanced by the CO2-O. The reduction in peak flame temperature was 4 K in the CO2-F cases, while the reduction in peak flame temperature was 83 K in the CO2-F/O cases. The soot formation was suppressed significantly by the effects of CO2-F/O. Compared with the CO2-F cases, the reductions in peak soot volume fraction were 22.5% and 23.5% in the CO2-F/O cases. The suppression effect of amount variation of the CO2-F on soot formation became more significant with the increase of flame height. The reductions in peak soot volume fractions were 0.3%, 3.07% and 6.38% at the flame heights of 20 mm, 30 mm and 40 mm in the CO2-F cases, and the corresponding reductions were 4.92%, 5.2% and 16% in the CO2-F/O cases, respectively.

15.
Microbiol Spectr ; : e0468822, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786651

ABSTRACT

Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC. Our results reveal an extensive parasite-mediated modulation of RBC metabolite levels of all classes, including lipids, amino acids, carbohydrates, and nucleotides, with numerous metabolic species varying in proportion to the level of infection. Many of these molecules are scavenged from the host RBCs. This is in accord with the needs of a rapidly proliferating parasite with limited biosynthetic capabilities. Probing these pathways in depth, we used growth inhibition assays to quantitate parasite susceptibility to drugs targeting these pathways and stimulated emission depletion (STED) microscopy to obtain high-resolution images of drug-treated parasites to correlate changes in morphology with specific metabolic blocks in order to validate the data generated by the untargeted metabolomics platform. Thus, interruption of cholesterol scavenging from the host cell led to premature parasite egress, while chemical targeting of the hydrolysis of acyl glycerides led to the buildup of malformed parasites that could not successfully egress. This is the first report detailing the global metabolomic profile of the B. divergens-infected RBC. Besides deciphering diverse aspects of the host-parasite relationship, our results can be exploited by others to uncover further drug targets in the host-parasite biochemical network. IMPORTANCE Human babesiosis is caused by apicomplexan parasites of the Babesia genus and is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations. Through its continuous cycles of invasion, proliferation, and egress, B. divergens radically changes the metabolic environment of the host red blood cell, allowing us opportunities to study potential chemical vulnerabilities that can be targeted by drugs. This is the first global metabolomic profiling of Babesia-infected human red blood cells, and our analysis revealed perturbation in all biomolecular classes at levels proportional to the level of infection. In particular, lipids and energy flux pathways in the host cell were altered by infection. We validated the changes in key metabolic pathways by performing inhibition assays accompanied by high-resolution microscopy. Overall, this global metabolomics analysis of Babesia-infected red blood cells has helped to uncover novel aspects of parasite biology and identified potential biochemical pathways that can be targeted for chemotherapeutic intervention.

16.
Blood Adv ; 7(4): 649-663, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35977077

ABSTRACT

Sickle red blood cells (RBCs) represent a naturally existing host-cell resistance mechanism to hemoparasite infections. We investigate the basis of this resistance using Babesia divergens grown in sickle (SS) and sickle trait (AS) cells. We found that oxygenation and its corresponding effect on RBC sickling, frequency of fetal hemoglobin positive (HbF+) cells, cellular redox environment, and parasite proliferation dynamics, all played a role in supporting or inhibiting Babesia proliferation. To identify cellular determinants that supported infection, an image flow cytometric tool was developed that could identify sickled cells and constituent Hb. We showed that hypoxic conditions impaired parasite growth in both SS and AS cells. Furthermore, cell sickling was alleviated by oxygenation (hyperoxic conditions), which decreased inhibition of parasite proliferation in SS cells. Interestingly, our tool identified HbF+-SS as host-cells of choice under both hypoxic and hyperoxic conditions, which was confirmed using cord RBCs containing high amounts of HbF+ cells. Uninfected SS cells showed a higher reactive oxygen species-containing environment, than AA or AS cells, which was further perturbed on infection. In hostile SS cells we found that Babesia alters its subpopulation structure, with 1N dominance under hypoxic conditions yielding to equivalent ratios of all parasite forms at hyperoxic conditions, favorable for growth. Multiple factors, including oxygenation and its impact on cell shape, HbF positivity, redox status, and parasite pleiotropy allow Babesia propagation in sickle RBCs. Our studies provide a cellular and molecular basis of natural resistance to Babesia, which will aid in defining novel therapies against human babesiosis.


Subject(s)
Anemia, Sickle Cell , Babesia , Babesiosis , Parasites , Animals , Humans , Babesiosis/parasitology , Erythrocytes/parasitology , Erythrocytes, Abnormal , Babesia/physiology , Hypoxia
17.
Front Cell Infect Microbiol ; 12: 962944, 2022.
Article in English | MEDLINE | ID: mdl-36275032

ABSTRACT

Babesiosis is a zoonosis and an important blood-borne human parasitic infection that has gained attention because of its growing infection rate in humans by transfer from animal reservoirs. Babesia represents a potential threat to the blood supply because asymptomatic infections in man are common, and blood from such donors can cause severe disease in certain recipients. Extracellular vesicles (EVs) are vesicles released by cells that contain a complex mixture of proteins, lipids, glycans, and genetic information that have been shown to play important roles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. In this article, we report on the identification and characterization of EVs released from red blood cells (RBCs) infected by two major human Babesia species-Babesia divergens from in vitro culture and those from an in vivo B. microti mouse infection. Using nanoparticle tracking analysis, we show that there is a range of vesicle sizes from 30 to 1,000 nm, emanating from the Babesia-infected RBC. The study of these EVs in the context of hemoparasite infection is complicated by the fact that both the parasite and the host RBC make and release vesicles into the extracellular environment. However, the EV frequency is 2- to 10-fold higher in Babesia-infected RBCs than uninfected RBCs, depending on levels of parasitemia. Using parasite-specific markers, we were able to show that ~50%-60% of all EVs contained parasite-specific markers on their surface and thus may represent the specific proportion of EVs released by infected RBCs within the EV population. Western blot analysis on purified EVs from both in vivo and in vitro infections revealed several parasite proteins that were targets of the host immune response. In addition, microRNA analysis showed that infected RBC EVs have different microRNA signature from uninfected RBC EVs, indicating a potential role as disease biomarkers. Finally, EVs were internalized by other RBCs in culture, implicating a potential role for these vesicles in cellular communication. Overall, our study points to the multiple functional implications of EVs in Babesia-host interactions and support the potential that EVs have as agents in disease pathogenesis.


Subject(s)
Babesia microti , Babesia , Extracellular Vesicles , MicroRNAs , Humans , Mice , Animals , Babesia/physiology , Erythrocytes/parasitology , Complex Mixtures , Lipids
18.
J Cell Mol Med ; 26(8): 2404-2416, 2022 04.
Article in English | MEDLINE | ID: mdl-35249258

ABSTRACT

Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self-renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS-derived erythroid cells is limited and the enucleation of ES/iPS-derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell-derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell-derived orthochromatic erythroblasts (ES-ortho), we found the chromatin of ES-ortho was less condensed than that of CB CD34+ cell-derived orthochromatic erythroblasts (CB-ortho). At the molecular level, both RNA-seq and ATAC-seq analyses revealed that pathways involved in chromatin modification were down-regulated in ES-ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES-ortho compared to that in CB-ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell-derived erythroid cells and may help to improve ex vivo RBC production from stem cells.


Subject(s)
Erythropoiesis , Fetal Blood , Antigens, CD34/metabolism , Cell Differentiation , Chromatin/metabolism , Embryonic Stem Cells/metabolism , Erythroid Cells , Humans
19.
Adv Mater ; 34(19): e2200905, 2022 May.
Article in English | MEDLINE | ID: mdl-35294781

ABSTRACT

Due to the adverse effects of erythropoietin (EPO) on cancer patient survival, it is necessary to develop new agents that can be used to efficiently manage and treat cancer-related anemia. In this study, novel distinctive carbon dots, J-CDs, derived from jujube are designed, synthesized, and characterized. Based on the obtained results, this material comprises sp2 and sp3 carbon atoms, as well as oxygen/nitrogen-based groups, and it specifically promotes the proliferation of erythroid cells by stimulating the self-renewal of erythroid progenitor cells in vitro and in vivo. Moreover, J-CDs have no discernible effects on tumor proliferation and metastasis, unlike EPO. Transcriptome profiling suggests that J-CDs upregulate the molecules involved in hypoxia response, and they also significantly increase the phosphorylation levels of STAT5, the major transducer of signals for erythroid progenitor cell proliferation. Overall, this study demonstrates that J-CDs effectively promote erythrocyte production without affecting tumor proliferation and metastasis; thus, they may be promising agents for the treatment of cancer-related anemia.


Subject(s)
Anemia , Erythropoietin , Neoplasms , Anemia/drug therapy , Anemia/pathology , Carbon/pharmacology , Carbon/therapeutic use , Erythroid Precursor Cells/pathology , Erythroid Precursor Cells/physiology , Erythropoiesis/physiology , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Humans , Neoplasms/complications , Neoplasms/drug therapy
20.
J Mol Cell Biol ; 14(2)2022 05 20.
Article in English | MEDLINE | ID: mdl-35022784

ABSTRACT

The aryl hydrocarbon receptor (AHR) plays an important role during mammalian embryo development. Inhibition of AHR signaling promotes the development of hematopoietic stem/progenitor cells. AHR also regulates the functional maturation of blood cells, such as T cells and megakaryocytes. However, little is known about the role of AHR modulation during the development of erythroid cells. In this study, we used the AHR antagonist StemRegenin 1 (SR1) and the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin during different stages of human erythropoiesis to elucidate the function of AHR. We found that antagonizing AHR signaling improved the production of human embryonic stem cell derived erythrocytes and enhanced erythroid terminal differentiation. RNA sequencing showed that SR1 treatment of proerythroblasts upregulated the expression of erythrocyte differentiation-related genes and downregulated actin organization-associated genes. We found that SR1 accelerated F-actin remodeling in terminally differentiated erythrocytes, favoring their maturation of the cytoskeleton and enucleation. We demonstrated that the effects of AHR inhibition on erythroid maturation were associated with F-actin remodeling. Our findings help uncover the mechanism for AHR-mediated human erythroid cell differentiation. We also provide a new approach toward the large-scale production of functionally mature human pluripotent stem cell-derived erythrocytes for use in translational applications.


Subject(s)
Actins , Receptors, Aryl Hydrocarbon , Actins/metabolism , Animals , Cell Differentiation/genetics , Erythroblasts/metabolism , Hematopoietic Stem Cells , Humans , Mammals , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL