Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 37(12): 5947-5957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748098

ABSTRACT

Therapy with chimeric antigen receptor T (CAR-T) cells involves using reformative T lymphocytes that have three domains, antigen recognition, transmembrane, and costimulating to achieve the therapeutic purpose. CAR-T therapy on malignant hematologic has been successful; however, its effectiveness in patients with solid tumors is still limited. Few studies exist confirming the efficacy of natural products on the function of CAR-T cells. The purpose of this study is to assess the effect of gastrodin (GAS) on CAR-T cells that target interleukin-13 receptor α2 antigen (IL-13Rα2 CAR-T) in the brain against glioblastoma multiforme. Migration of IL-13Rα2 CAR-T was evaluated using the Transwell assay. The effects of GAS on IL-13Rα2 CAR-T cells were assessed both in vitro and situ glioblastoma models. The cytoskeleton was stained with Fluorescein 5-isothiocyanate (FITC)-phalloidin. Cytokines expression in cells was determined by flow cytometry and ELISA assay. Western blotting was used to detect the S1P1 expression, and quantitative PCR assay was used to determine the IL-13Rα2 gene level. GAS increased the migratory and destructive capacity of IL-13Rα2 CAR-T cells with no effect on cytokine release. By increasing the expression of S1P1, GAS encouraged the entry of CAR-T cells into the brain and bone marrow. Transcriptomic analysis revealed that genes related to skeletal migration such as add2 and gng8 showed increased expression in GAS-treated CAR-T cells. We found that GAS synergistically improves the mobility of IL-13Rα2 CAR-T, enhancing their ability to recognize the tumor antigen of glioblastoma, which could be advantageous for the application of CAR-T for the treatment of solid tumors.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/metabolism , T-Lymphocytes , Brain/metabolism
2.
Cancer Immunol Immunother ; 72(7): 2393-2403, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36991262

ABSTRACT

Chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has been proven to be a powerful tool for the treatment of cancer, however, the limits are obvious, especially for solid tumors. Therefore, constantly optimizing the structure of CAR to improve its therapeutic effect is necessary. In this study, we generated three different third-generation CARs targeting IL13Rα2, with the same scFv, but different transmembrane domains (TMDs) from CD4, CD8 or CD28 (IL13-CD4TM-28.BB.ζ, IL13-CD8TM-28.BB.ζ and IL13-CD28TM-28.BB.ζ). CARs were transduced into primary T cells using retroviruses. The anti-GBM efficacy of CAR-T cells was monitored by flow cytometry and real-time cell analysis (RTCA) in vitro and examined in two xenograft mouse models. The differentially expressed genes related to different anti-GBM activity were screened by high throughput RNA sequencing. We observed that T cells transduced with these three CARs have similar anti-tumor activity when co-cultured with U373 cells which expressed higher IL13Rα2 but exhibited different anti-tumor activity when co-cultured with U251 cells that expressed lower IL13Rα2. All the three groups of CAR-T cells can be activated by U373 cells, but only IL13-CD28TM-28.BB.ζ CAR-T cells could be activated and expressed increased IFN-γ after co-culturing with U251 cells. IL13-CD28TM-28.BB.ζ CAR-T cells exhibited the best anti-tumor activity in xenograft mouse models which can infiltrate into the tumors. The superior anti-tumor efficacy of IL13-CD28TM-28.BB.ζ CAR-T cells was partially owing to differentially expressed extracellular assembly, extracellular matrix, cell migration and adhesion-related genes which contribute to the lower activation threshold, increased cell proliferation, and elevated migration capacity.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Animals , Humans , Mice , CD28 Antigens , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Immunotherapy, Adoptive , Interleukin-13 , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13 Receptor alpha2 Subunit/immunology , T-Lymphocytes , Xenograft Model Antitumor Assays
3.
Mol Ther Oncolytics ; 24: 443-451, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35141400

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cells have exhibited impressive anti-tumor effects in both B cell malignancies and some types of solid tumors. However, single-chain variable fragment (scFv) of a murine monoclonal antibody will induce immune responses, limit CAR-T cell persistence, and thus increase the risk of relapse. This study successfully constructed a CAR-targeting interleukin-13 receptor α2 (IL-13Rα2) according to a murine antibody, and then humanized the scFv sequence to generate another CAR. T cells expressing any of these two CARs demonstrated superior tumor inhibitory effects in vitro and in two xenograft mouse models. However, T cells transduced with humanized CAR have an increased expansion and reduced cytokines, including interleukin-6 and interferon-γ. The top expressed genes clustered in leukocyte-mediated cytotoxicity, and T cell migration and immunological synapse formation contributed to the anti-glioblastoma (GBM) activity of the humanized CAR. In conclusion, we successfully generated a humanized third-generation CAR-targeting IL-13Rα2 and confirmed its anti-GBM efficacy, which provide a candidate method for clinical GBM treatment.

4.
Oncoimmunology ; 10(1): 1960728, 2021.
Article in English | MEDLINE | ID: mdl-34408922

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive brain malignancy in adults and is currently incurable with conventional therapies. The use of chimeric antigen receptor (CAR) modified T cells has been successful in clinical treatment of blood cancers, except solid tumors such as GBM. This study generated two third-generation CARs targeting different epitopes of ephrin type-A receptor 2 (EphA2) and examined their anti-GBM efficacy in vitro and in tumor-bearing mice. We observed that these two types of T cells expressing CAR (CAR-T) targeting EphA2 could be activated and expanded by EphA2 positive tumor cells in vitro. The survival of tumor-bearing mice after EphA2 CAR-T cell treatment was significantly improved. T cells transduced with one of the two EphA2 CARs exhibited better anti-tumor activity, which is related to the upregulation of CXCR-1/2 and appropriate interferon-γ (IFN-γ) production. CAR-T cells expressed excessively high level of IFN-γ exhibited poor anti-tumor activity resulting from inducing the upregulation of PD-L1 in GBM cells. The combination of CAR-T cells with poor anti-tumor activity and PD1 blockade improved the efficacy in tumor-bearing mice. In conclusion, both types of EphA2 CAR-T cells eliminated 20%-50% of GBM in xenograft mouse models. The appropriate combination of IFN-γ and CXCR-1/2 levels is a key factor for evaluating the antitumor efficiency of CAR-T cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , B7-H1 Antigen , Brain Neoplasms/therapy , Glioblastoma/therapy , Interferon-gamma , Mice , T-Lymphocytes/ultrastructure , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...