Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Stem Cell Res Ther ; 16(2): 189-198, 2021.
Article in English | MEDLINE | ID: mdl-32628591

ABSTRACT

The world is currently engulfed with a viral disease with no cure. Thus, far, millions of people are infected with the virus across the length and breadth of the world, with thousands losing their lives each passing day. The WHO in February 2020 classified the virus as a coronavirus and the name Coronavirus-19 (CoV-19) was offered to the virus. The disease caused by the virus was termed coronavirus disease-19 (COVID-19). The pathogenesis of COVID-19 is associated with elevation of several immune players as well as inflammatory factors which contribute to cytokine storms. Currently, the detection of CoV-19 RNA is through reverse transcriptase-polymerase chain reaction (RTPCR). Mesenchymal stem cells (MSCs) are capable of suppressing several kinds of cytokines via the paracrine secretion system. Therefore, MSCs therapy could be game changer in the treatment of the current COVID-19 pandemic. Moreover, intravenous IG may be capable of suppressing the high expression of IL-6 by the CoV-19 resulting in lessen disease burden. Anti-inflammatory medications like, corticosteroids, tocilizumab, glycyrrhetinic acid, as well as etoposide may be very advantageous in decreasing the COVID-19 burden because their mode of action targets the cytokine storms initiated by the CoV-19. It is important to indicate that, these medications do not target the virus itself. Therefore, potent CoV-19 anti-viral medications are needed to completely cure patients with COVID-19. Furthermore, a vaccine is urgently needed to stop the spread of the virus. This review, therefore, elucidates the immune players in the management of COVID-19; focusing principally on MSCs and inflammatory mediators.


Subject(s)
COVID-19/immunology , COVID-19/virology , Inflammation/pathology , Mesenchymal Stem Cells/metabolism , SARS-CoV-2/physiology , Humans
3.
Heliyon ; 7(12): e08560, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35005265

ABSTRACT

The current study was designed to test the hypothesis that BmK AGAP (AGAP) potentiates the analgesic effect of lidocaine. The chronic constrictive injury was performed on 72 rats to induce a rapid onset and long-lasting pain. The rats were randomly assigned to one of six groups; Group A (n = 12) received an intrathecal administration of saline, Group B (n = 12) received an intrathecal injection of lidocaine, Group C (n = 12) received an intrathecal administration of AGAP, Group D, E, and F (n = 12 each) received an intrathecal administration of lidocaine 0.005 mg/ml + AGAP 25, 50, 100 µg/kg respectively. The von Frey filaments were used to assess mechanical allodynia. Nav1.7 and TRPV1 currents were recorded by the whole-cell aspiration patch-clamp technique, and KCNQ2/3 currents were recorded by the whole-cell drilling patch-clamp technique. The whole-cell aspiration patch-clamp technique showed that AGAP inhibited TRPV1and KCNQ2/3 currents and increased the analgesic effect of lidocaine. AGAP may have a synergistic effect with lidocaine which demonstrates a potential therapeutic approach for optimizing post-operative analgesia.

4.
J Immunol Res ; 2020: 4582612, 2020.
Article in English | MEDLINE | ID: mdl-33062720

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of 4-aminoquinoline compounds with over 60 years of safe clinical usage. CQ and HCQ are able to inhibit the production of cytokines such as interleukin- (IL-) 1, IL-2, IL-6, IL-17, and IL-22. Also, CQ and HCQ inhibit the production of interferon- (IFN-) α and IFN-γ and/or tumor necrotizing factor- (TNF-) α. Furthermore, CQ blocks the production of prostaglandins (PGs) in the intact cell by inhibiting substrate accessibility of arachidonic acid necessary for the production of PGs. Moreover, CQ affects the stability between T-helper cell (Th) 1 and Th2 cytokine secretion by augmenting IL-10 production in peripheral blood mononuclear cells (PBMCs). Additionally, CQ is capable of blocking lipopolysaccharide- (LPS-) triggered stimulation of extracellular signal-modulated extracellular signal-regulated kinases 1/2 in human PBMCs. HCQ at clinical levels effectively blocks CpG-triggered class-switched memory B-cells from differentiating into plasmablasts as well as producing IgG. Also, HCQ inhibits cytokine generation from all the B-cell subsets. IgM memory B-cells exhibits the utmost cytokine production. Nevertheless, CQ triggers the production of reactive oxygen species. A rare, but serious, side effect of CQ or HCQ in nondiabetic patients is hypoglycaemia. Thus, in critically ill patients, CQ and HCQ are most likely to deplete all the energy stores of the body leaving the patient very weak and sicker. We advocate that, during clinical usage of CQ and HCQ in critically ill patients, it is very essential to strengthen the CQ or HCQ with glucose infusion. CQ and HCQ are thus potential inhibitors of the COVID-19 cytokine storm.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Betacoronavirus/drug effects , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokines/biosynthesis , Humans , Pandemics , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer/drug effects
5.
BMC Anesthesiol ; 19(1): 177, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31521119

ABSTRACT

BACKGROUND: Postoperative Nausea and Vomiting (PONV) is a dreadful and uncomfortable experience that significantly detracts patients' quality of life after surgery. This study aimed to examine the antiemetic effect of a single sub-hypnotic dose of propofol as prophylaxis for PONV. METHOD: In this prospective, double-blind, randomized control trial, 345 parturients presented for elective cesarean section at the Obstetric unit of Tamale Teaching Hospital were recruited. Each recruited parturient was randomly assigned to one of three groups; Propofol group (n = 115) represented those who received propofol 0.5 mg/kg, Metoclopramide group (n = 115) represented those who received metoclopramide 10 mg and, Control group (n = 115) represented those who received 0.9% saline. Spinal anesthesia with 0.5% hyperbaric bupivacaine 7.5-10 mg, and intrathecal morphine 0.2 mg was employed for the anesthesia. RESULTS: The data indicate that 108 (93.9%) parturients from the control group, 10 (8.7%) from the propofol group and 8 (7.0%) from the metoclopramide group experienced some incidence of PONV. There was no significant difference in the incidence of PONV (nausea, vomiting, and none) between the propofol and the metoclopramide groups (P = 0.99; 0.31; and 0.35 respectively). Parturients who received antiemetic agents were 105 (97.2%), 1 (10.0%) and 3 (37.5%) from the control, propofol and metoclopramide groups respectively. The data indicated that 98 (85.2%) parturients from the control, 3 (2.6%) from propofol group, and 100 (87.0%) from the metoclopramide group experienced some levels of pruritus. There was a significant difference in the incidence of pruritus (mild, moderate, and no pruritus) between the metoclopramide and propofol groups (P <  0.01; P <  0.01; and P <  0.01 respectively). CONCLUSION: A sub-hypnotic dose of propofol is effective as metoclopramide in the prevention of PONV in parturient undergoing cesarean section under spinal anesthesia with intrathecal morphine. Sub-hypnotic dose of propofol significantly reduces the incidence of postoperative pruritus following intrathecal morphine use. TRIAL REGISTRATION: Current control trial, registered at ISRCTN trial registry: ISRCTN15475205 . Date registered: 03/04/2019. Retrospectively registered.


Subject(s)
Antiemetics/administration & dosage , Cesarean Section/methods , Metoclopramide/administration & dosage , Postoperative Nausea and Vomiting/prevention & control , Propofol/administration & dosage , Adult , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Hypnotics and Sedatives/administration & dosage , Injections, Spinal , Morphine/administration & dosage , Morphine/adverse effects , Postoperative Nausea and Vomiting/chemically induced , Pregnancy , Prospective Studies , Pruritus/chemically induced , Pruritus/prevention & control , Quality of Life
6.
Front Oncol ; 9: 21, 2019.
Article in English | MEDLINE | ID: mdl-30740360

ABSTRACT

A scorpion peptide reported to exhibit both analgesic and antitumor activity in animal models may present as an alternative therapeutic agent for breast cancer. We aimed to investigate the effect of Buthus martensii Karsch antitumor-analgesic peptide (BmK AGAP) on breast cancer cell stemness and epithelial-mesenchymal transition (EMT). We treated MCF-7 and MDA-MB-231 cells with different concentrations of rBmK AGAP and observed that rBmK AGAP inhibited cancer cell stemness, epithelial-mesenchymal transition (EMT), migration, and invasion. Analysis by qPCR, ELISA, western blot, immunofluorescence staining, sphere formation, colony assay, transwell migration, and invasion assays demonstrated rBmK AGAP treatment decreased the expressions of Oct4, Sox2, N-cadherin, Snail, and increased the expression of E-cadherin. rBmK AGAP inhibited breast cancer cell stemness, EMT, migration, and invasion by down-regulating PTX3 through NF-κB and Wnt/ß-catenin signaling Pathway in vitro and in vivo. Xenograft tumor model confirmed inhibition of tumor growth, stem-like features, and EMT by rBmK AGAP. Thus, rBmK AGAP is a potential therapeutic agent against breast cancer and related pain.

SELECTION OF CITATIONS
SEARCH DETAIL