Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131176, 2024 May.
Article in English | MEDLINE | ID: mdl-38599433

ABSTRACT

The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16 ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.


Subject(s)
Chitosan , Selenium , Chitosan/chemistry , Selenium/chemistry , Cell Line , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Carriers/chemistry , Animals , Mice , Nanoparticles/chemistry , Microbial Sensitivity Tests , Drug Delivery Systems , Macrophages/metabolism , Macrophages/drug effects , Hydrophobic and Hydrophilic Interactions
2.
Environ Sci Pollut Res Int ; 31(12): 18540-18548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347356

ABSTRACT

Although Mn(III) complexes with organic ligands have been previously identified, the information about their stability and reactivity is scarce. In the present study, we analyzed the formation and stability of three different complexes: Mn(III)-citrate, Mn(III)-tartrate, and Mn(III)-humic acid (HA), as well as their reactivity toward an element of high environmental concern, lead (Pb).Our results indicate that the stability of studied complexes is highly dependent on pH. The Mn(III) complexes with citrate and tartrate degrade below pH 8, due to the electron transfer reaction between Mn(III) and the ligand, while the Mn(III)-HA complex's degradation is slower and less sensitive to pH. At pH 4, less than 40% of the initial Mn(III)-HA was found to be stable.The reactivity of the complexes was different depending on the ligand and its concentration. The Mn(III)-citrate and Mn(III)-tartrate complexes effectively reduced PbO2 and releases aqueous Pb2+, although significant differences were found with increasing ligand concentration. There was no evidence of the reduction of PbO2 by Mn(III) when it forms a complex with HA. This is likely due to the large size of HA moieties that prevent the Mn(III) component of the complex from getting close enough to the PbO2 surface to initiate electron transfer and lead to the reduction of Pb(IV) by HA itself.


Subject(s)
Humic Substances , Tartrates , Oxidation-Reduction , Ligands , Lead , Molecular Weight , Citrates
3.
J Environ Sci (China) ; 139: 105-113, 2024 May.
Article in English | MEDLINE | ID: mdl-38105038

ABSTRACT

The key role of manganese (Mn) in the biogeochemical cycle of trace elements has been of great interest in recent years. Nevertheless, the redox properties of aqueous Mn(III) have been studied to a lesser extent. Mn(III) is not stable in solution by itself. However, when complexed with inorganic ligands, it has shown potential to oxidize and reduce trace elements. In the present study, we are exploring the redox characteristics of the complex Mn(III)-Pyrophosphate (Mn(III)-PP). This complex is stable over a wide range of pH values but requires the ratio of Mn:PP to be less than 1:6. Specifically, the redox reaction of chromium (Cr(III)) and Mn(III)-PP is investigated. A solid, Cr(OH)3, is used as a source of Cr(III).  For this reaction, environmentally relevant parameters, such as pH, ionic strength, ratio Mn(III)/Cr(III), and excess of ligand, were assessed. Results showed that Mn(III) can effectively oxidize Cr(III) to Cr(VI), taking about 15 days for the reaction to complete. This reaction occurs only under acidic conditions (pH 4), and with a low excess of Pyrophosphate. The initial Mn(III) concentration decreases as the Cr(VI) is produced, and Cr(VI) can be adsorbed back into the Cr(OH)3 surface, limiting the mobility of this toxic species. Despite this adsorption, significant amounts of Cr(VI) are release in the aqueous phase. This study shows the importance of a mobile species (Mn-PP complex) in the oxidation of Cr(III) and the release of Cr(VI) to the environment.


Subject(s)
Manganese , Trace Elements , Manganese/chemistry , Diphosphates , Oxidation-Reduction , Chromium/chemistry , Water , Oxidative Stress
4.
Molecules ; 28(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630350

ABSTRACT

Chronic skin wound is a chronic illness that possesses a risk of infection and sepsis. In particular, infections associated with antibiotic-resistant bacterial strains are challenging to treat. To combat this challenge, a suitable alternative that is complementary to antibiotics is desired for wound healing. In this work, we report multi-functional nanoscale chitosan vesicles loaded with manganese (Chi-Mn) that has potential to serve as a new tool to augment traditional antibiotic treatment for skin wound healing. Chi-Mn showed antioxidant activity increase over time as well as antimicrobial activity against E. coli and P. aeruginosa PA01. The modified motility assay that mimicked a skin wound before bacterial colonization showed inhibition of bacterial growth with Chi-Mn treatment at a low area density of 0.04 µg of Mn per cm2. Furthermore, this study demonstrated the compatibility of Chi-Mn with a commercial antibiotic showing no loss of antimicrobial potency. In vitro cytotoxicity of Chi-Mn was assessed with macrophages and dermal cell lines (J774A.1 and HDF) elucidating biocompatibility at a wide range (2 ppm-256 ppm). A scratch wound assay involving human dermal fibroblast (HDF) cells was performed to assess any negative effect of Chi-Mn on cell migration. Confocal microscopy study confirmed that Chi-Mn tested at the MIC (16 ppm Mn) has no effect on cell migration with respect to control. Overall, this study demonstrated the potential of Chi-Mn nanovesicles for wound healing applications.


Subject(s)
Chitosan , Humans , Escherichia coli , Manganese , Anti-Bacterial Agents/pharmacology , Biological Assay , Pseudomonas aeruginosa
5.
Chemosphere ; 339: 139631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487972

ABSTRACT

The redox capabilities of birnessite minerals are contingent upon the physical characteristics of the solid, indicating that different allotropes have various reactivities. Here, the role of these structural differences on the oxidation of iodine, a risk driving environmental contaminant in several federal complexes, was investigated. The mechanism of which can be seen here, with one of the minerals of study, acid birnessite. The pH range chosen for this study was pH 5-6. Throughout the experiments it was seen that the average oxidation state (AOS) had the greatest contribution to the differences in redox capabilities of the various birnessite minerals. Several trends were observed throughout this study: as AOS decreased, oxidation of iodide (I-) increased; as specific surface area (SSA) increased, the sorption of iodate (IO3-) increased. Additional experiments were conducted at trace levels of iodine, to better model environmental conditions. In that case, a one-step conversion of I- to IO3- occurred, to a greater extent than under artificially elevated concentrations.


Subject(s)
Iodine , Oxides/chemistry , Oxidation-Reduction , Manganese Compounds/chemistry , Minerals/chemistry , Cell Proliferation
6.
Brain Spine ; 2: 101693, 2022.
Article in English | MEDLINE | ID: mdl-36506285

ABSTRACT

Introduction: Pneumocephalus after chronic subdural hematoma (CSDH) evacuation is a potential predictor of hematoma recurrence. Research question: To study the feasibility and safety of a novel CSDH evacuation technique using a valve-controlled method to avoid pneumocephalus. Material and methods: In a retrospective case series, we evacuated CSDH using very low-pressure valve-controlled drains and recorded the neurological, radiological, and functional outcomes. Patients with primary CSDH, without previous neurosurgical intervention, and who did not receive antiplatelet or anticoagulant therapy the week prior to the index surgery, were included in the study. Exclusion criteria were the evacuation with other treatment techniques and incomplete data files. Patients were assessed according to the Bender grading system to record the neurological status. The hematoma volume was estimated using the formula for ellipsoid volumes. Results: Thirty-six patients with a mean age of 73 years (±9 years) fulfilled our eligibility criteria. Our technique was effective since it decreased the CSDH volume from 141 â€‹ml (IQR 97 â€‹ml) to 20.6 â€‹ml (IQR 26.59 â€‹ml; p â€‹< â€‹0.001) and improved the neurological status according to the Bender grading system from two (IQR 0.25) to 1 (IQR 0). However, pneumocephalus and hematoma recurrence occurred in one case each (2.8%). At six months, all patients returned to their previous status, except for two patients (5.6%) who died due to irrelevant pathologies. Conclusions: Valve-controlled CSDH evacuation aiming to decrease the postoperative pneumocephalus and hematoma recurrence constitutes an effective and safe alternative. However, larger randomized controlled studies are required to establish its role in CSDH management.

7.
Appl Environ Microbiol ; 88(16): e0102322, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35916514

ABSTRACT

Linear nitramines are potentially carcinogenic environmental contaminants. The NnlA enzyme from Variovorax sp. strain JS1663 degrades the nitramine N-nitroglycine (NNG)-a natural product produced by some bacteria-to glyoxylate and nitrite (NO2-). Ammonium (NH4+) was predicted as the third product of this reaction. A source of nonheme FeII was shown to be required for initiation of NnlA activity. However, the role of this FeII for NnlA activity was unclear. This study reveals that NnlA contains a b-type heme cofactor. Reduction of this heme-either by a nonheme iron source or dithionite-is required to initiate NnlA activity. Therefore, FeII is not an essential substrate for holoenzyme activity. Our data show that reduced NnlA (FeII-NnlA) catalyzes at least 100 turnovers and does not require O2. Finally, NH4+ was verified as the third product, accounting for the complete nitrogen mass balance. Size exclusion chromatography showed that NnlA is a dimer in solution. Additionally, FeII-NnlA is oxidized by O2 and NO2- and stably binds carbon monoxide (CO) and nitric oxide (NO). These are characteristics shared with heme-binding PAS domains. Furthermore, a structural homology model of NnlA was generated using the PAS domain from Pseudomonas aeruginosa Aer2 as a template. The structural homology model suggested His73 is the axial ligand of the NnlA heme. Site-directed mutagenesis of His73 to alanine decreased the heme occupancy of NnlA and eliminated NNG activity, validating the homology model. We conclude that NnlA forms a homodimeric heme-binding PAS domain protein that requires reduction for initiation of the activity. IMPORTANCE Linear nitramines are potential carcinogens. These compounds result from environmental degradation of high-energy cyclic nitramines and as by-products of carbon capture technologies. Mechanistic understanding of the biodegradation of these compounds is critical to inform strategies for their remediation. Biodegradation of NNG by NnlA from Variovorax sp. strain JS 1663 requires nonheme iron, but its role is unclear. This study shows that nonheme iron is unnecessary. Instead, our study reveals that NnlA contains a heme cofactor, the reduction of which is critical for activating NNG degradation activity. These studies constrain the proposals for NnlA reaction mechanisms, thereby informing mechanistic studies of degradation of anthropogenic nitramine contaminants. In addition, these results will inform future work to design biocatalysts to degrade these nitramine contaminants.


Subject(s)
Heme , Nitrogen Dioxide , Ferrous Compounds/metabolism , Heme/metabolism , Heme-Binding Proteins , Iron/metabolism , Nitric Oxide/metabolism , Nitrogen Dioxide/metabolism
8.
J Biol Chem ; 298(3): 101696, 2022 03.
Article in English | MEDLINE | ID: mdl-35150744

ABSTRACT

The hemerythrin-like protein from Mycobacterium kansasii (Mka HLP) is a member of a distinct class of oxo-bridged diiron proteins that are found only in mycobacterial species that cause respiratory disorders in humans. Because it had been shown to exhibit weak catalase activity and a change in absorbance on exposure to nitric oxide (NO), the reactivity of Mka HLP toward NO was examined under a variety of conditions. Under anaerobic conditions, we found that NO was converted to nitrite (NO2-) via an intermediate, which absorbed light at 520 nm. Under aerobic conditions NO was converted to nitrate (NO3-). In each of these two cases, the maximum amount of nitrite or nitrate formed was at best stoichiometric with the concentration of Mka HLP. When incubated with NO and H2O2, we observed NO peroxidase activity yielding nitrite and water as reaction products. Steady-state kinetic analysis of NO consumption during this reaction yielded a Km for NO of 0.44 µM and a kcat/Km of 2.3 × 105 M-1s-1. This high affinity for NO is consistent with a physiological role for Mka HLP in deterring nitrosative stress. This is the first example of a peroxidase that uses an oxo-bridged diiron center and a rare example of a peroxidase utilizing NO as an electron donor and cosubstrate. This activity provides a mechanism by which the infectious Mycobacterium may combat against the cocktail of NO and superoxide (O2•-) generated by macrophages to defend against bacteria, as well as to produce NO2- to adapt to hypoxic conditions.


Subject(s)
Hemerythrin , Mycobacterium kansasii , Peroxidases , Hemerythrin/metabolism , Hydrogen Peroxide , Kinetics , Mycobacterium kansasii/enzymology , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Nitrogen Dioxide/metabolism , Oxidoreductases/metabolism
9.
Micromachines (Basel) ; 12(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205934

ABSTRACT

A novel Au nanoparticle (AuNP)-biopolymer coated carbon screen-printed electrode (SPE) sensor was developed through the co-electrodeposition of Au and chitosan for mercury (Hg) ion detection. This new sensor showed successful Hg2+ detection in landfill leachate using square wave anodic stripping voltammetry (SWASV) with an optimized condition: a deposition potential of -0.6 V, deposition time of 200 s, amplitude of 25 mV, frequency of 60 Hz, and square wave step voltage of 4 mV. A noticeable peak was observed at +0.58 V associated with the stripping current of the Hg ion. The sensor exhibited a good sensitivity of ~0.09 µA/µg (~0.02 µA/nM) and a linear response over the concentration range of 10 to 100 ppb (50-500 nM). The limit of detection (LOD) was 1.69 ppb, which is significantly lower than the safety limit defined by the United States Environmental Protection Agency (USEPA). The sensor had an excellent selective response to Hg2+ in landfill leachate against other interfering cations (e.g., Zn2+, Pb2+, Cd2+, and Cu2+). Fifteen successive measurements with a stable peak current and a lower relative standard deviation (RSD = 5.1%) were recorded continuously using the AuNP-biopolymer-coated carbon SPE sensor, which showed excellent stability, sensitivity and reproducibility and consistent performance in detecting the Hg2+ ion. It also exhibited a good reliability and performance in measuring heavy metals in landfill leachate.

10.
Environ Sci Process Impacts ; 23(6): 844-854, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-33885702

ABSTRACT

Remediation efforts for the abatement of Tc-99 contamination in the environment have traditionally focused on the reduction of soluble pertechnetate (Tc(vii)O4-) to insoluble, and less mobile, technetium(iv) oxide (TcO2). Effectiveness of the reductive immobilization of Tc-99 depends on the susceptibility of TcO2 to oxidation to TcO4-in situ, as it is subject to dissolution by oxidizing agents, such as oxygen. Manganese minerals can be a liability for the long-term in situ immobilization of Tc-99, even in suboxic and anoxic systems due to their strong oxidizing capacity. This study presents for the first time the oxidative dissolution of TcO2 to pertechnetate by birnessite under anaerobic conditions. Oxidative dissolution of TcO2 was studied as a function of pH and birnessite:TcO2 ratios and in the presence of Ca2+ and Mn2+. As low as 5 mg of birnessite dissolved ∼65% of the original TcO2 in the suspensions and subsequently released TcO4- in the aqueous phase at both pH 6.5 and 8 in the absence of oxygen. On the other hand, the ability of birnessite to sequester calcium and manganese on its surface at pH 6.5 through sorption was shown to inhibit the oxidative capacity of birnessite. Maximum TcO4- release in the aqueous phase by Ca- and Mn-loaded birnessite was ∼50% less compared to pure birnessite, indicating that divalent cations sorb on active centers responsible for birnessite's oxidative capacity and potentially passivate the mineral. In summary, birnessite exerts strong geochemical controls over the mobility of Tc-99 in anoxic systems by oxidatively mobilizing the otherwise insoluble Tc(iv) to Tc(vii) and their presence in natural systems needs to be taken into account when long-term remediation strategies are being designed.


Subject(s)
Oxidative Stress , Oxides , Anaerobiosis , Oxidation-Reduction , Solubility
11.
Environ Geochem Health ; 42(8): 2547-2556, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31858357

ABSTRACT

Uranium is a contaminant of major concern across the US Department of Energy complex that served a leading role in nuclear weapon fabrication for half a century. In an effort to decrease the concentration of soluble uranium, tripolyphosphate injections were identified as a feasible remediation strategy for sequestering uranium in situ in contaminated groundwater at the Hanford Site. The introduction of sodium tripolyphosphate into uranium-bearing porous media results in the formation of uranyl phosphate minerals (autunite) of general formula {X1-2[(UO2)(PO4)]2-1·nH2O}, where X is a monovalent or divalent cation. The stability of the uranyl phosphate minerals is a critical factor that determines the long-term effectiveness of this remediation strategy that can be affected by biogeochemical factors such as the presence of bicarbonates and bacterial activity. The objective of this research was to investigate the effect of bicarbonate ions present in the aqueous phase on Ca-autunite dissolution under anaerobic conditions, as well as the role of metal-reducing facultative bacterium Shewanella oneidensis MR1. The concentration of total uranium determined in the aqueous phase was in direct correlation to the concentration of bicarbonate present in the solution, and the release of Ca, U and P into the aqueous phase was non-stoichiometric. Experiments revealed the absence of an extensive biofilm on autunite surface, while thermodynamic modeling predicted the presence of secondary minerals, which were identified through microscopy. In conclusion, the dissolution of autunite under the conditions studied is susceptible to bicarbonate concentration, as well as microbial presence.


Subject(s)
Bicarbonates/chemistry , Shewanella/metabolism , Uranium/chemistry , Anaerobiosis , Groundwater , Minerals/chemistry , Minerals/metabolism , Phosphates/chemistry , Phosphates/metabolism , Polyphosphates , Solubility , Thermodynamics , Uranium/metabolism , Uranium Compounds/chemistry , Uranium Compounds/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
12.
J Environ Manage ; 212: 210-218, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29433000

ABSTRACT

The present study explores a novel application of Huma-K, a commercially available, unrefined humic substance, as a promising low-cost source of organic matter for in situ remediation of contaminated acidic groundwater plumes. This can be achieved by creating a humic-rich coating on the surface of minerals which can enhance the sorption of contaminants from groundwater. Huma-K was characterized by means of scanning electron microscopy equipped with energy dispersive spectroscopy, Fourier-transform infrared analysis, and potentiometric titrations. Batch experiments were performed to investigate the sorption-desorption behavior of Huma-K and to evaluate what conditions (pH, contact time, and initial Huma-K concentration) affect these processes upon injection into aquifer sediments. As evidenced by potentiometric titrations, Huma-K possesses functional groups that have an acidic nature, with pK values in the range of 4-6 (carboxylic) and 9-10 (phenolic). Sorption, homogeneous precipitation, and surface-induced precipitation seem to be favored in the presence of sediment at pH 4, where there is less deprotonation of acidic functional groups. As the pH is increased, functional groups become negatively charged, leading to electrostatic repulsion and dissolution of Huma-K from sediment. Kinetic experiments indicate that Huma-K sorption is a slow-rate process, most likely governed by film diffusion. The enhanced sorption of Huma-K in acidic conditions suggests that it may be used to create a subsurface treatment zone in acidic aquifers for the sequestration of contaminants such as uranium. The treatment zone will persist as long as the pH does not increase sufficiently to cause soil-bound Huma-K to be released, remobilizing aqueous contaminants.


Subject(s)
Groundwater , Humic Substances , Water Pollutants, Radioactive/isolation & purification , Adsorption , Uranium
13.
Immunol Res ; 57(1-3): 23-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24218360

ABSTRACT

CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L(-/-) CD8(+) T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L(-/-) CD8(+) T cells were functionally indistinguishable from CD62L(+/+) CD8(+) T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8(+) T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT(-/-) animals), CD8(+) T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8(+) T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunotherapy, Adoptive , L-Selectin/metabolism , Animals , Gene Expression , Immunologic Memory , Immunophenotyping , Immunotherapy, Adoptive/methods , L-Selectin/genetics , Lymph Nodes/immunology , Lymphopenia/immunology , Lymphopenia/therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Melanoma/therapy , Melanoma, Experimental , Mice , Mice, Transgenic , Models, Biological , Tumor Burden/immunology , gp100 Melanoma Antigen/immunology , gp100 Melanoma Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL