Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Nephrol ; : 151496, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490903

ABSTRACT

Amyloidosis is a heterogeneous disorder characterized by abnormal protein aggregate deposition that often leads to kidney involvement and end-stage kidney disease. With advancements in diagnostic techniques and treatment options, the prevalence of patients with amyloidosis requiring chronic dialysis has increased. Kidney transplantation is a promising avenue for extending survival and enhancing quality of life in these patients. However, the complex and heterogeneous nature of amyloidosis presents challenges in determining optimal referral timing for transplantation and managing post-transplantation course. This review focuses on recent developments and outcomes of kidney transplantation for amyloidosis-related end-stage kidney disease. This review also aims to guide clinical decision-making and improve management of patients with amyloidosis-associated kidney disease, offering insights into optimizing patient selection and post-transplant care for favorable outcomes.

2.
Nat Commun ; 13(1): 7040, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396631

ABSTRACT

Multiple myeloma is a plasma cell malignancy almost always preceded by precursor conditions, but low tumor burden of these early stages has hindered the study of their molecular programs through bulk sequencing technologies. Here, we generate and analyze single cell RNA-sequencing of plasma cells from 26 patients at varying disease stages and 9 healthy donors. In silico dissection and comparison of normal and transformed plasma cells from the same bone marrow biopsy enables discovery of patient-specific transcriptional changes. Using Non-Negative Matrix Factorization, we discover 15 gene expression signatures which represent transcriptional modules relevant to myeloma biology, and identify a signature that is uniformly lost in abnormal cells across disease stages. Finally, we demonstrate that tumors contain heterogeneous subpopulations expressing distinct transcriptional patterns. Our findings characterize transcriptomic alterations present at the earliest stages of myeloma, providing insight into the molecular underpinnings of disease initiation.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Plasma Cells/pathology , Bone Marrow/pathology
3.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282911

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
4.
bioRxiv ; 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-32817937

ABSTRACT

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3a/b and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...