Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 133, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38368370

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS: Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS: Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS: For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.


Subject(s)
Calcium-Binding Proteins , Pancreatic Neoplasms , Humans , Calcium/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Mitochondria Associated Membranes , Pancreatic Neoplasms/pathology
2.
Redox Biol ; 53: 102324, 2022 07.
Article in English | MEDLINE | ID: mdl-35533575

ABSTRACT

Myoferlin, an emerging oncoprotein, has been associated with a low survival in several cancer types including pancreas ductal adenocarcinoma where it controls mitochondria structure and respiratory functions. Owing to the high susceptibility of KRAS-mutated cancer cells to iron-dependent cell death, ferroptosis, and to the high iron content in mitochondria, we investigated the relation existing between mitochondrial integrity and iron-dependent cell death. We discovered that myoferlin targeting with WJ460 pharmacological compound triggered mitophagy and ROS accumulation culminating with lipid peroxidation and apoptosis-independent cell death. WJ460 caused a reduction of the abundance of ferroptosis core regulators xc- cystine/glutamate transporter and GPX-4. Mitophagy inhibitor Mdivi1 and iron chelators inhibited the myoferlin-related ROS production and restored cell growth. Additionally, we reported a synergic effect between ferroptosis inducers, erastin and RSL3, and WJ460.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , Humans , Iron/metabolism , Lipid Peroxidation , Mitophagy , Pancreas , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism
3.
J Stomatol Oral Maxillofac Surg ; 123(6): e663-e669, 2022 11.
Article in English | MEDLINE | ID: mdl-35276408

ABSTRACT

OBJECTIVE: To evaluate the effect of a second-stage piezocision on the biological response. MATERIALS AND METHODS: 60 rats were randomly allocated to 6 experimental groups of 10 rats. Rats undergoing a one-stage piezocision were sacrified on day 7, 28 and 42 (groups 1-3) while rats undergoing a two-satge piezocision were sacrified on day 42, 63 and 90 (groups 4-6), respectively. The biological response was investigated in 3D at the tissue level using Nano-computed tomography (Nano-CT) and, at the molecular level using the qRT-PCR technique. Bone Volume Fraction (BVF) loss was the primary endpoint. RESULTS: Similar loss of BVF were observed both after the first and second piezocisions. The change in BVF loss between 7 and 28 days after each piezocision were 25.1 ± 13.0 (SE)% and 11.2 ± 11.6 (SE)% respectively and did not differ from each other (p = 0.43). Changes in BVF loss from 7 to 42 days were also comparable in one-stage and two-stage piezocision (4.9 ± 12.3 (SE) vs. -19.9 ± 13.4 (SE), p = 0.19). At the molecular level, all parameters except Translating Ribosome Affinity Purification (TRAP) protein had identical patterns. CONCLUSION: Within the limits of the present study, a second piezocision allowed to re-induce the Regional Acceleratory Phenomenon (RAP) effect. Nevertheless, the relevance of the findings to the clinical effect has not been tested.


Subject(s)
Piezosurgery , Tooth Movement Techniques , Humans , Rats , Animals , Tooth Movement Techniques/methods , Piezosurgery/methods , Reverse Transcriptase Polymerase Chain Reaction
4.
Cancers (Basel) ; 12(6)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575867

ABSTRACT

Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating in a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenues aiming at modulating mitofusin function in pancreas cancer.

5.
Cells ; 8(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443490

ABSTRACT

In mammal myocytes, endothelial cells and inner ear cells, ferlins are proteins involved in membrane processes such as fusion, recycling, endo- and exocytosis. They harbour several C2 domains allowing their interaction with phospholipids. The expression of several Ferlin genes was described as altered in several tumoural tissues. Intriguingly, beyond a simple alteration, myoferlin, otoferlin and Fer1L4 expressions were negatively correlated with patient survival in some cancer types. Therefore, it can be assumed that membrane biology is of extreme importance for cell survival and signalling, making Ferlin proteins core machinery indispensable for cancer cell adaptation to hostile environments. The evidences suggest that myoferlin, when overexpressed, enhances cancer cell proliferation, migration and metabolism by affecting various aspects of membrane biology. Targeting myoferlin using pharmacological compounds, gene transfer technology, or interfering RNA is now considered as an emerging therapeutic strategy.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Neoplasms/metabolism , Calcium-Binding Proteins/genetics , Humans , Membrane Proteins/genetics , Muscle Proteins/genetics , Neoplasms/pathology
6.
Cancers (Basel) ; 11(6)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248212

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with an overall survival of 5% and is the second cause of death by cancer, mainly linked to its high metastatic aggressiveness. Accordingly, understanding the mechanisms sustaining the PDAC metastatic phenotype remains a priority. In this study, we generated and used a murine in vivo model to select clones from the human Panc-1 PDAC cell line that exhibit a high propensity to seed and metastasize into the liver. We showed that myoferlin, a protein previously reported to be overexpressed in PDAC, is significantly involved in the migratory abilities of the selected cells. We first report that highly metastatic Panc-1 clones expressed a significantly higher myoferlin level than the corresponding low metastatic ones. Using scratch wound and Boyden's chamber assays, we show that cells expressing a high myoferlin level have higher migratory potential than cells characterized by a low myoferlin abundance. Moreover, we demonstrate that myoferlin silencing leads to a migration decrease associated with a reduction of mitochondrial respiration. Since mitochondrial oxidative phosphorylation has been shown to be implicated in the tumor progression and dissemination, our data identify myoferlin as a valid potential therapeutic target in PDAC.

SELECTION OF CITATIONS
SEARCH DETAIL
...