Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(5): e3002405, 2024 May.
Article in English | MEDLINE | ID: mdl-38713717

ABSTRACT

We report a new visualization tool for analysis of whole-genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by National Center for Biotechnology Information (NCBI) using assembly alignment algorithms developed by us and others. Researchers can examine large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed where available. CGV currently provides approximately 800 alignments from over 350 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.


Subject(s)
Genome , Software , Animals , Genome/genetics , Sequence Alignment/methods , Genomics/methods , Algorithms , United States , Humans , Eukaryota/genetics , Databases, Genetic , National Library of Medicine (U.S.) , Molecular Sequence Annotation/methods
2.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077029

ABSTRACT

We report a new visualization tool for analysis of whole genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by NCBI using assembly alignment algorithms developed by us and others. Researchers can examine the alignments between the two assemblies using two alternate views: a chromosome ideogram-based view or a 2D genome dotplot. Whole genome alignment views expose large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed in the ideogram view where available. CGV currently provides approximately 700 alignments from over 300 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.

3.
Genome Res ; 31(1): 159-169, 2021 01.
Article in English | MEDLINE | ID: mdl-33239395

ABSTRACT

The National Center for Biotechnology Information (NCBI) is an archive providing free access to a wide range and large volume of biological sequence data and literature. Staff scientists at NCBI analyze user-submitted data in the archive, producing gene and SNP annotation and generating sequence alignment tools. NCBI's flagship genome browser, Genome Data Viewer (GDV), displays our in-house RefSeq annotation; is integrated with other NCBI resources such as Gene, dbGaP, and BLAST; and provides a platform for customized analysis and visualization. Here, we describe how members of the biomedical research community can use GDV and the related NCBI Sequence Viewer (SV) to access, analyze, and disseminate NCBI and custom biomedical sequence data. In addition, we report how users can add SV to their own web pages to create a custom graphical sequence display without the need for infrastructure investments or back-end deployments.


Subject(s)
Genome , Databases, Genetic , Humans , National Library of Medicine (U.S.) , Sequence Alignment , Software , United States
4.
Nucleic Acids Res ; 41(Database issue): D936-41, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23193291

ABSTRACT

Much has changed in the last two years at DGVa (http://www.ebi.ac.uk/dgva) and dbVar (http://www.ncbi.nlm.nih.gov/dbvar). We are now processing direct submissions rather than only curating data from the literature and our joint study catalog includes data from over 100 studies in 11 organisms. Studies from human dominate with data from control and case populations, tumor samples as well as three large curated studies derived from multiple sources. During the processing of these data, we have made improvements to our data model, submission process and data representation. Additionally, we have made significant improvements in providing access to these data via web and FTP interfaces.


Subject(s)
Databases, Nucleic Acid , Genomic Structural Variation , Genotype , Humans , Internet , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...