Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 27(8): 110463, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39129829

ABSTRACT

During malaria infection, Plasmodium sporozoites, the fast-moving stage of the parasite, are injected by a mosquito into the skin of the mammalian host. In the skin, sporozoites need to migrate through the dermal tissue to enter the blood vessel. Sporozoite motility is critical for infection but not well understood. Here, we used collagen hydrogels with tunable fiber structures, as an in vitro model for the skin. After injecting sporozoites into the hydrogel, we analyzed their motility in three-dimension (3D). We found that sporozoites demonstrated chiral motility, in that they mostly follow right-handed helical trajectories. In high-concentration collagen gel, sporozoites have lower instantaneous speed, but exhibit straighter tracks compared to low-concentration collagen gel, which leads to longer net displacement and faster dissemination. Taken together, our study indicates an inner mechanism for sporozoites to adapt to the environment, which could help with their successful exit from the skin tissue.

2.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712120

ABSTRACT

Cellular morphology, shaped by various genetic and environmental influences, is pivotal to studying experimental cell biology, necessitating precise measurement and analysis techniques. Traditional approaches, which rely on geometric metrics derived from stained images, encounter obstacles stemming from both the imaging and analytical domains. Staining processes can disrupt the cell's natural state and diminish accuracy due to photobleaching, while conventional analysis techniques, which categorize cells based on shape to discern pathophysiological conditions, often fail to capture the continuous and asynchronous nature of biological processes such as cell differentiation, immune responses, and cancer progression. In this work, we propose the use of quantitative phase imaging for morphological assessment due to its label-free nature. For analysis, we repurposed the genomic analysis toolbox to perform trajectory inference analysis purely based on morphology information. We applied the developed framework to study the progression of leukemia and breast cancer metastasis. Our approach revealed a clear pattern of morphological evolution tied to the diseases' advancement, highlighting the efficacy of our method in identifying functionally significant shape changes where conventional techniques falter. This advancement offers a fresh perspective on analyzing cellular morphology and holds significant potential for the broader research community, enabling a deeper understanding of complex biological dynamics.

3.
Biosens Bioelectron ; 235: 115388, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37207582

ABSTRACT

White adipose tissue (WAT) and brown adipose tissue (BAT) are the primary types of fats in humans, and they play prominent roles in energy storage and thermogenesis, respectively. While the mechanisms of terminal adipogenesis are well understood, much remains unknown about the early stages of adipogenic differentiation. Label-free approaches, such as optical diffraction tomography (ODT) and Raman spectroscopy, offer the ability to retrieve morphological and molecular information at the single cell level without the negative effects of photobleaching and system perturbation due to introduction of fluorophores. In this study, we employed 3D ODT and Raman spectroscopy to gain deeper insights into the early stages of differentiation of human white preadipocytes (HWPs) and human brown preadipocytes (HBPs). We utilized ODT to retrieve morphological information, including cell dry mass and lipid mass, and Raman spectroscopy to obtain molecular information about lipids. Our findings reveal that HWPs and HBPs undergo dynamic and differential changes during the differentiation process. Notably, we found that HBPs accumulated lipids more rapidly and had a higher lipid mass than HWPs. Additionally, both cell types experienced an increase and subsequent decrease in cell dry mass during the first seven days, followed by an increase after day 7, which we attribute to the transformation of adipogenic precursors in the early stages. Finally, HBPs had higher lipid unsaturation levels than HWPs for the same differentiation timepoints. The insights gained from our study provide crucial contributions towards the advancement of new therapies for obesity and related diseases.


Subject(s)
Adipocytes, Brown , Biosensing Techniques , Humans , Adipocytes, Brown/metabolism , Spectrum Analysis, Raman , Cell Differentiation/genetics , Lipids , Phenotype , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL