Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inherit Metab Dis ; 46(1): 55-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36220785

ABSTRACT

Protein catabolism ultimately yields toxic ammonia, which must be converted to urea by the liver for renal excretion. In extrahepatic tissues, ammonia is temporarily converted primarily to glutamine for subsequent hepatic extraction. Urea cycle disorders (UCDs) are inborn errors of metabolism causing impaired ureagenesis, leading to neurotoxic accumulation of ammonia and brain glutamine. Treatment includes dietary protein restriction and oral "ammonia scavengers." These scavengers chemically combine with glutamine and glycine to yield excretable products, creating an alternate pathway of waste nitrogen disposal. The amino acid transporter SLC6A19 is responsible for >95% of absorption and reabsorption of free neutral amino acids in the small intestine and kidney, respectively. Genetic SLC6A19 deficiency causes massive neutral aminoaciduria but is typically benign. We hypothesized that inhibiting SLC6A19 would open a novel and effective alternate pathway of waste nitrogen disposal. To test this, we crossed SLC6A19 knockout (KO) mice with spfash mice, a model of ornithine transcarbamylase (OTC) deficiency. Loss of SLC6A19 in spfash mice normalized plasma ammonia and brain glutamine and increased median survival in response to a high protein diet from 7 to 97 days. While induced excretion of amino acid nitrogen is likely the primary therapeutic mechanism, reduced intestinal absorption of dietary free amino acids, and decreased muscle protein turnover due to loss of SLC6A19 may also play a role. In summary, the results suggest that SLC6A19 inhibition represents a promising approach to treating UCDs and related aminoacidopathies.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Amino Acid Transport Systems, Neutral , Ornithine Carbamoyltransferase Deficiency Disease , Mice , Animals , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/metabolism , Glutamine , Nitrogen/metabolism , Ammonia , Disease Models, Animal , Mice, Knockout , Urea/metabolism , Ornithine Carbamoyltransferase/genetics , Amino Acid Transport Systems, Neutral/genetics
2.
Sci Rep ; 11(1): 22886, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819582

ABSTRACT

Phenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Subject(s)
Genetic Therapy , Liver/enzymology , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Hydroxylase/metabolism , Phenylalanine/blood , Phenylketonurias/therapy , Transcriptome , Animals , Biomarkers/blood , Brain/metabolism , Brain/pathology , Disease Models, Animal , Down-Regulation , Gene Expression Profiling , Male , Mice, Knockout , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Hydroxylase/genetics , Phenylketonurias/blood , Phenylketonurias/genetics , Phenylketonurias/pathology , Proteome , Proteomics
3.
Sci Rep ; 11(1): 7254, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790381

ABSTRACT

Phenylketonuria (PKU) is an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism. It is caused by a partial or complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for conversion of Phe to tyrosine (Tyr). This metabolic error results in buildup of Phe and reduction of Tyr concentration in blood and in the brain, leading to neurological disease and intellectual deficits. Patients exhibit retarded body growth, hypopigmentation, hypocholesterolemia and low levels of neurotransmitters. Here we report first attempt at creating a homozygous Pah knock-out (KO) (Hom) mouse model, which was developed in the C57BL/6 J strain using CRISPR/Cas9 where codon 7 (GAG) in Pah gene was changed to a stop codon TAG. We investigated 2 to 6-month-old, male, Hom mice using comprehensive behavioral and biochemical assays, MRI and histopathology. Age and sex-matched heterozygous Pah-KO (Het) mice were used as control mice, as they exhibit enough PAH enzyme activity to provide Phe and Tyr levels comparable to the wild-type mice. Overall, our findings demonstrate that 6-month-old, male Hom mice completely lack PAH enzyme, exhibit significantly higher blood and brain Phe levels, lower levels of brain Tyr and neurotransmitters along with lower myelin content and have significant behavioral deficit. These mice exhibit phenotypes that closely resemble PKU patients such as retarded body growth, cutaneous hypopigmentation, and hypocholesterolemia when compared to the age- and sex-matched Het mice. Altogether, biochemical, behavioral, and pathologic features of this novel mouse model suggest that it can be used as a reliable translational tool for PKU preclinical research and drug development.


Subject(s)
CRISPR-Cas Systems , Disease Models, Animal , Gene Knockout Techniques , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Animals , Male , Mice , Mice, Knockout
4.
Curr Opin Plant Biol ; 19: 51-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727074

ABSTRACT

Understanding the logic of plant natural product biosynthesis is important for three reasons: it guides the search for new natural products and pathways, illuminates the function of existing pathways in the context of host biology, and builds an enabling 'parts list' for plant and microbial metabolic engineering. In this review, we highlight the chemical themes that underlie a broad range of plant pathways, dividing pathways into two parts: scaffold-generating steps that draw on a limited set of chemistries, and tailoring reactions that produce a wide range of end products from a small number of common scaffolds.


Subject(s)
Aldehydes/metabolism , Biological Products/metabolism , Plants/metabolism , Amines/metabolism , Cyclization , Oxidation-Reduction
5.
Angew Chem Int Ed Engl ; 52(51): 13625-8, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24151049

ABSTRACT

Bringing it all together: The missing key step in the biosynthesis of camalexin was uncovered by in vitro biochemical characterization. The coupling of Trp- and Cys-derived fragments through CS bond formation is promoted by an unusual cytochrome P450 CYP71A13. The in vitro reconstitution of the camalexin biosynthesis (left) from Trp and Cys was achieved using just three cytochromes P450. IAN=indole-3-acetonitrile.


Subject(s)
Arabidopsis Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Indoles/chemical synthesis , Thiazoles/chemical synthesis , Arabidopsis , Biological Products , Indoles/chemistry , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...