Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 617, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866801

ABSTRACT

In this study we examine the impact of cell confluency on gene expression. We focused on Argonaute (AGO) protein dynamics and associated gene and protein expression in HEK293, A375, and SHSY5Y cell lines. As a consequence of cell confluency, AGO2 protein translocates into the nucleus. Therefore, we generated transcriptomic data using RNA sequencing to compare gene expression in subconfluent versus confluent cells, which highlighted significant alterations in gene regulation patterns directly corresponding to changes in cell density. Our study also encompasses miRNA profiling data obtained through small RNA sequencing, revealing miRNA expressional changes dependent on cellular confluency, as well as cellular localization. Finally, we derived proteomic data from mass spectrometry analyses following AGO1-4 immunoprecipitation, providing a comprehensive view of AGO interactome in both nuclear and cytoplasmic compartments under varying confluency. These datasets offer a detailed exploration of the cellular and molecular dynamics, influenced by cell confluency, presenting a valuable resource for further research in cellular biology, particularly in understanding the basic mechanisms of cell density in cancer cells.


Subject(s)
Argonaute Proteins , Proteomics , Transcriptome , Humans , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , HEK293 Cells , Cell Line, Tumor , Gene Expression Profiling
2.
PLoS One ; 19(1): e0297262, 2024.
Article in English | MEDLINE | ID: mdl-38277395

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the innate immune machinery through multiple viral proteins, including nonstructural protein 1 (NSP1). While NSP1 is known to suppress translation of host mRNAs, the mechanisms underlying its immune evasion properties remain elusive. By integrating RNA-seq, ribosome footprinting, and ChIP-seq in A549 cells we found that NSP1 predominantly represses transcription of immune-related genes by favoring Histone 3 Lysine 9 dimethylation (H3K9me2). G9a/GLP H3K9 methyltransferase inhibitor UNC0638 restored expression of antiviral genes and restricted SARS-CoV-2 replication. Our multi-omics study unravels an epigenetic mechanism underlying host immune evasion by SARS-CoV-2 NSP1. Elucidating the factors involved in this phenomenon, may have implications for understanding and treating viral infections and other immunomodulatory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Epigenetic Repression , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
3.
BMC Mol Cell Biol ; 24(1): 26, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592256

ABSTRACT

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS: Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS: This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.


Subject(s)
Triple Negative Breast Neoplasms , Humans , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Keratin-19 , Cytoplasm , 3' Untranslated Regions/genetics
4.
Cell Rep ; 42(3): 112260, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36924503

ABSTRACT

Matrin3 is an RNA-binding protein that regulates diverse RNA-related processes, including mRNA splicing. Although Matrin3 has been intensively studied in neurodegenerative diseases, its function in cancer remains unclear. Here, we report Matrin3-mediated regulation of mitotic spindle dynamics in colorectal cancer (CRC) cells. We comprehensively identified RNAs bound and regulated by Matrin3 in CRC cells and focused on CDC14B, one of the top Matrin3 targets. Matrin3 knockdown results in increased inclusion of an exon containing a premature termination codon in the CDC14B transcript and simultaneous down-regulation of the standard CDC14B transcript. Knockdown of CDC14B phenocopies the defects in mitotic spindle dynamics upon Matrin3 knockdown, and the elongated and misoriented mitotic spindle observed upon Matrin3 knockdown are rescued upon overexpression of CDC14B, suggesting that CDC14B is a key downstream effector of Matrin3. Collectively, these data reveal a role for the Matrin3/CDC14B axis in control of mitotic spindle dynamics.


Subject(s)
Alternative Splicing , Dual-Specificity Phosphatases , Alternative Splicing/genetics , Dual-Specificity Phosphatases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Spindle Apparatus/metabolism , Cell Cycle Proteins/metabolism
5.
Cancer Gene Ther ; 29(6): 734-749, 2022 06.
Article in English | MEDLINE | ID: mdl-34316033

ABSTRACT

Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell-cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs. We also show NK-EVs are taken up by target cells via macropinocytosis. Collectively, our findings elucidate the novel properties of NK-EVs and the mechanism of their incorporation into target cells.


Subject(s)
Exosomes , Extracellular Vesicles , Cytokines/metabolism , Cytotoxicity, Immunologic , Extracellular Vesicles/metabolism , Humans , Interleukin-15/metabolism , Killer Cells, Natural
6.
Pharmacogenomics J ; 21(6): 638-648, 2021 12.
Article in English | MEDLINE | ID: mdl-34145402

ABSTRACT

Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein-protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.


Subject(s)
Keratinocytes/drug effects , MicroRNAs/metabolism , Spermine/analogs & derivatives , Transcriptome , Tretinoin/analogs & derivatives , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Dose-Response Relationship, Drug , Gene Regulatory Networks , HaCaT Cells , Humans , Inhibitory Concentration 50 , Keratinocytes/metabolism , Keratinocytes/pathology , MicroRNAs/genetics , Protein Interaction Maps , Signal Transduction/drug effects , Signal Transduction/genetics , Spermine/pharmacology , Spermine/toxicity , Tretinoin/pharmacology , Tretinoin/toxicity
7.
Cell ; 184(11): 2878-2895.e20, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33979654

ABSTRACT

The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.


Subject(s)
RNA Precursors/genetics , RNA Splice Sites/physiology , Transcription, Genetic , Exons/genetics , Humans , Introns/genetics , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA Splicing/genetics , RNA Splicing/physiology , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcriptome
8.
Nucleic Acids Res ; 49(8): e45, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33503264

ABSTRACT

Crosslinking and immunoprecipitation (CLIP) methods are powerful techniques to interrogate direct protein-RNA interactions and dissect posttranscriptional gene regulatory networks. One widely used CLIP variant is photoactivatable ribonucleoside enhanced CLIP (PAR-CLIP) that involves in vivo labeling of nascent RNAs with the photoreactive nucleosides 4-thiouridine (4SU) or 6-thioguanosine (6SG), which can efficiently crosslink to interacting proteins using UVA and UVB light. Crosslinking of 4SU or 6SG to interacting amino acids changes their base-pairing properties and results in characteristic mutations in cDNA libraries prepared for high-throughput sequencing, which can be computationally exploited to remove abundant background from non-crosslinked sequences and help pinpoint RNA binding protein binding sites at nucleotide resolution on a transcriptome-wide scale. Here we present a streamlined protocol for fluorescence-based PAR-CLIP (fPAR-CLIP) that eliminates the need to use radioactivity. It is based on direct ligation of a fluorescently labeled adapter to the 3'end of crosslinked RNA on immobilized ribonucleoproteins, followed by isolation of the adapter-ligated RNA and efficient conversion into cDNA without the previously needed size fractionation on denaturing polyacrylamide gels. These improvements cut the experimentation by half to 2 days and increases sensitivity by 10-100-fold.


Subject(s)
DNA, Complementary/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Binding Sites , Cell Line , Cross-Linking Reagents/chemistry , Electrophoresis, Polyacrylamide Gel , GTP Phosphohydrolases/chemistry , Gene Library , Humans , Immunoprecipitation , Oligonucleotides , Polymerase Chain Reaction/methods , Protein Binding , RNA/chemistry , Ribonucleoproteins/genetics , Sensitivity and Specificity , Software , Thiouridine/chemistry , Ultraviolet Rays
9.
Genes Dev ; 35(1-2): 102-116, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334821

ABSTRACT

p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.


Subject(s)
Alternative Splicing/genetics , Hyaluronan Receptors/genetics , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Gene Knockdown Techniques , Gene Silencing , HCT116 Cells , HEK293 Cells , Humans , Hyaluronan Receptors/metabolism , Protein Binding/genetics , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , Tumor Suppressor Protein p53/metabolism
10.
Cancers (Basel) ; 12(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092114

ABSTRACT

Transcriptomics profiles of miRNAs, tRNAs or tRFs are used as biomarkers, after separate examination of several cancer cell lines, blood samples or biopsies. However, the possible contribution of all three profiles on oncogenic signaling and translation as a net regulatory effect, is under investigation. The present analysis of miRNAs and tRFs from lung cancer biopsies indicated putative targets, which belong to gene networks involved in cell proliferation, transcription and translation regulation. In addition, we observed differential expression of specific tRNAs along with several tRNA-related genes with possible involvement in carcinogenesis. Transfection of lung adenocarcinoma cells with two identified tRFs and subsequent NGS analysis indicated gene targets that mediate signaling and translation regulation. Broader analysis of all major signaling and translation factors in several biopsy specimens revealed a crosstalk between the PI3K/AKT and MAPK pathways and downstream activation of eIF4E and eEF2. Subsequent polysome profile analysis and 48S pre-initiation reconstitution experiments showed increased global translation rates and indicated that aberrant expression patterns of translation initiation factors could contribute to elevated protein synthesis. Overall, our results outline the modulatory effects that possibly correlate the expression of important regulatory non-coding RNAs with aberrant signaling and translation deregulation in lung cancer.

11.
Nat Commun ; 11(1): 4693, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943634

ABSTRACT

The alphavirus capsid protein (Cp) selectively packages genomic RNA (gRNA) into the viral nucleocapsid to produce infectious virus. Using photoactivatable ribonucleoside crosslinking and an innovative biotinylated Cp retrieval method, here we comprehensively define binding sites for Semliki Forest virus (SFV) Cp on the gRNA. While data in infected cells demonstrate Cp binding to the proposed genome packaging signal (PS), mutagenesis experiments show that PS is not required for production of infectious SFV or Chikungunya virus. Instead, we identify multiple Cp binding sites that are enriched on gRNA-specific regions and promote infectious SFV production and gRNA packaging. Comparisons of binding sites in cytoplasmic vs. viral nucleocapsids demonstrate that budding causes discrete changes in Cp-gRNA interactions. Notably, Cp's top binding site is maintained throughout virus assembly, and specifically binds and assembles with Cp into core-like particles in vitro. Together our data suggest a model for selective alphavirus genome recognition and assembly.


Subject(s)
Alphavirus/metabolism , Capsid Proteins/metabolism , Capsid/metabolism , Genomics , RNA, Viral/genetics , Alphavirus/genetics , Alphavirus/ultrastructure , Animals , Binding Sites , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Chikungunya virus/genetics , Chlorocebus aethiops , Models, Molecular , Nucleocapsid/metabolism , Protein Binding , RNA, Viral/chemistry , Semliki forest virus/metabolism , Vero Cells , Virus Assembly , Virus Replication
12.
Curr Protoc Mol Biol ; 131(1): e120, 2020 06.
Article in English | MEDLINE | ID: mdl-32438484

ABSTRACT

During the course of their life cycle, most RNAs move between several cellular environments where they associate with different RNA binding proteins (RBPs). Reciprocally, a significant portion of RBPs reside in more than a single cellular compartment, where they can interact with discrete RNAs and even exert distinct biological roles. Proximity-CLIP combines proximity biotinylation of proteins with photoactivatable ribonucleoside-enhanced protein-RNA crosslinking to simultaneously profile the proteome, including RBPs and the RBP-bound transcriptome, in any given subcellular compartment. Here we provide a detailed experimental protocol for Proximity-CLIP along with a simplified non-radioactive, small-RNA cDNA library preparation protocol. Published 2020 U.S. Government. Basic Protocol 1: Cell culture, 4SU labeling, proximity biotinylation, and crosslinking Basic Protocol 2: Cell extraction, streptavidin affinity purification, and on-beads trypsinization Basic Protocol 3: RNA footprints cDNA library preparation Support Protocol: Preparation of RNA-seq libraries from intact RNA.


Subject(s)
Gene Library , MicroRNAs/genetics , RNA Precursors/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Gene Expression Profiling/methods , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , RNA-Binding Proteins/genetics , RNA-Seq/methods , Transcriptome
13.
Sci Rep ; 9(1): 14650, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601969

ABSTRACT

Keratin 19 (K19) belongs to the keratin family of proteins, which maintains structural integrity of epithelia. In cancer, K19 is highly expressed in several types where it serves as a diagnostic marker. Despite the positive correlation between higher expression of K19 in tumor and worse patient survival, the role of K19 in breast cancer remains unclear. Therefore, we ablated K19 expression in MCF7 breast cancer cells and found that K19 was required for cell proliferation. Transcriptome analyses of KRT19 knockout cells identified defects in cell cycle progression and levels of target genes of E2F1, a key transcriptional factor for the transition into S phase. Furthermore, proper levels of cyclin dependent kinases (CDKs) and cyclins, including D-type cyclins critical for E2F1 activation, were dependent on K19 expression, and K19-cyclin D co-expression was observed in human breast cancer tissues. Importantly, K19 interacts with cyclin D3, and a loss of K19 resulted in decreased protein stability of cyclin D3 and sensitivity of cells towards CDK inhibitor-induced cell death. Overall, these findings reveal a novel function of K19 in the regulation of cell cycle program and suggest that K19 may be used to predict the efficacy of CDK inhibitors for treatments of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cyclin-Dependent Kinases/antagonists & inhibitors , Keratin-19/metabolism , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/drug therapy , Cell Cycle , Cyclin D3/metabolism , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm , Female , Gene Knockout Techniques , Humans , Keratin-19/genetics , MCF-7 Cells , Protein Kinase Inhibitors/therapeutic use , RNA-Seq
14.
Science ; 365(6452)2019 08 02.
Article in English | MEDLINE | ID: mdl-31371577

ABSTRACT

Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings." These mice have a natural microbiota and pathogens at all body sites and the tractable genetics of C57BL/6 mice. The bacterial microbiome, mycobiome, and virome of wildlings affect the immune landscape of multiple organs. Their gut microbiota outcompete laboratory microbiota and demonstrate resilience to environmental challenges. Wildlings, but not conventional laboratory mice, phenocopied human immune responses in two preclinical studies. A combined natural microbiota- and pathogen-based model may enhance the reproducibility of biomedical studies and increase the bench-to-bedside safety and success of immunological studies.


Subject(s)
Animals, Wild/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/immunology , Host-Pathogen Interactions/immunology , Immunity , Animals , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Translational Research, Biomedical/standards
15.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31101765

ABSTRACT

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Energy Metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Membrane Potential, Mitochondrial , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Ovarian Neoplasms/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Genes Dev ; 33(9-10): 482-497, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30842218

ABSTRACT

Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3' splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasms/physiopathology , Splicing Factor U2AF/metabolism , Cell Line, Tumor , Cytoplasm/pathology , Disease Progression , HEK293 Cells , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , MCF-7 Cells , Mutation/genetics , Neoplasms/genetics , Protein Binding , RNA, Messenger/metabolism , Splicing Factor U2AF/genetics
17.
Epigenomics ; 11(2): 215-245, 2019 02.
Article in English | MEDLINE | ID: mdl-30565492

ABSTRACT

Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , RNA, Transfer/genetics , Skin Neoplasms/genetics , Animals , Humans , Protein Biosynthesis , RNA, Transfer/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
18.
Int J Mol Sci ; 19(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563203

ABSTRACT

Mitogen-activated protein kinase phosphatase (Mkp)-1 exerts its anti-inflammatory activities during Gram-negative sepsis by deactivating p38 and c-Jun N-terminal kinase (JNK). We have previously shown that Mkp-1+/+ mice, but not Mkp-1-/- mice, exhibit hypertriglyceridemia during severe sepsis. However, the regulation of hepatic lipid stores and the underlying mechanism of lipid dysregulation during sepsis remains an enigma. To understand the molecular mechanism underlying the sepsis-associated metabolic changes and the role of Mkp-1 in the process, we infected Mkp-1+/+ and Mkp-1-/- mice with Escherichia coli i.v., and assessed the effects of Mkp-1 deficiency on tissue lipid contents. We also examined the global gene expression profile in the livers via RNA-seq. We found that in the absence of E. coli infection, Mkp-1 deficiency decreased liver triglyceride levels. Upon E. coli infection, Mkp-1+/+ mice, but not Mkp-1-/- mice, developed hepatocyte ballooning and increased lipid deposition in the livers. E. coli infection caused profound changes in the gene expression profile of a large number of proteins that regulate lipid metabolism in wildtype mice, while these changes were substantially disrupted in Mkp-1-/- mice. Interestingly, in Mkp-1+/+ mice E. coli infection resulted in downregulation of genes that facilitate fatty acid synthesis but upregulation of Cd36 and Dgat2, whose protein products mediate fatty acid uptake and triglyceride synthesis, respectively. Taken together, our studies indicate that sepsis leads to a substantial change in triglyceride metabolic gene expression programs and Mkp-1 plays an important role in this process.


Subject(s)
Dual Specificity Phosphatase 1/deficiency , Escherichia coli Infections/genetics , Gene Expression Profiling/methods , Lipid Metabolism , Sepsis/genetics , Animals , Escherichia coli Infections/metabolism , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Liver/chemistry , Metabolic Networks and Pathways , Mice , Sepsis/metabolism , Sepsis/microbiology , Sequence Analysis, RNA , Triglycerides/metabolism
19.
Nat Methods ; 15(12): 1074-1082, 2018 12.
Article in English | MEDLINE | ID: mdl-30478324

ABSTRACT

Methods for the systematic study of subcellular RNA localization are limited, and their development has lagged behind that of proteomic tools. We combined APEX2-mediated proximity biotinylation of proteins with photoactivatable ribonucleoside-enhanced crosslinking to simultaneously profile the proteome and the transcriptome bound by RNA-binding proteins in any given subcellular compartment. Our approach is fractionation independent and allows study of the localization of RNA processing intermediates, as well as the identification of regulatory RNA cis-acting elements occupied by proteins, in a cellular-compartment-specific manner. We used our method, Proximity-CLIP, to profile RNA and protein in the nucleus, in the cytoplasm, and at cell-cell interfaces. Among other insights, we observed frequent transcriptional readthrough continuing for several kilobases downstream of the canonical cleavage and polyadenylation site and a differential RBP occupancy pattern for mRNAs in the nucleus and cytoplasm. We observed that mRNAs localized to cell-cell interfaces often encoded regulatory proteins and contained protein-occupied CUG sequence elements in their 3' untranslated region.


Subject(s)
Gene Expression Regulation , Proteomics/methods , RNA-Binding Proteins/metabolism , RNA/metabolism , Transcriptome , Binding Sites , Cross-Linking Reagents/chemistry , HEK293 Cells , Humans , Isotope Labeling , Protein Binding , RNA/genetics , RNA-Binding Proteins/genetics
20.
Mol Cell ; 71(6): 1040-1050.e8, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146314

ABSTRACT

In mammals, gene silencing by the RNA-induced silencing complex (RISC) is a well-understood cytoplasmic posttranscriptional gene regulatory mechanism. Here, we show that embryonic stem cells (ESCs) contain high levels of nuclear AGO proteins and that in ESCs nuclear AGO protein activity allows for the onset of differentiation. In the nucleus, AGO proteins interact with core RISC components, including the TNRC6 proteins and the CCR4-NOT deadenylase complex. In contrast to cytoplasmic miRNA-mediated gene silencing that mainly operates on cis-acting elements in mRNA 3' untranslated (UTR) sequences, in the nucleus AGO binding in the coding sequence and potentially introns also contributed to post-transcriptional gene silencing. Thus, nuclear localization of AGO proteins in specific cell types leads to a previously unappreciated expansion of the miRNA-regulated transcriptome.


Subject(s)
Argonaute Proteins/physiology , Gene Silencing/physiology , MicroRNAs/physiology , Animals , Argonaute Proteins/genetics , Cell Differentiation/genetics , Cell Line , Cell Nucleus , Cytoplasm , Embryonic Stem Cells/metabolism , Humans , Mammals , Mice , MicroRNAs/genetics , RNA Interference , RNA Stability , RNA, Messenger , RNA, Small Interfering , RNA-Binding Proteins , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...