Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMJ Ment Health ; 26(1)2023 Jul.
Article in English | MEDLINE | ID: mdl-37603383

ABSTRACT

BACKGROUND: Current dementia risk scores have had limited success in consistently identifying at-risk individuals across different ages and geographical locations. OBJECTIVE: We aimed to develop and validate a novel dementia risk score for a midlife UK population, using two cohorts: the UK Biobank, and UK Whitehall II study. METHODS: We divided the UK Biobank cohort into a training (n=176 611, 80%) and test sample (n=44 151, 20%) and used the Whitehall II cohort (n=2934) for external validation. We used the Cox LASSO regression to select the strongest predictors of incident dementia from 28 candidate predictors and then developed the risk score using competing risk regression. FINDINGS: Our risk score, termed the UK Biobank Dementia Risk Score (UKBDRS), consisted of age, education, parental history of dementia, material deprivation, a history of diabetes, stroke, depression, hypertension, high cholesterol, household occupancy, and sex. The score had a strong discrimination accuracy in the UK Biobank test sample (area under the curve (AUC) 0.8, 95% CI 0.78 to 0.82) and in the Whitehall cohort (AUC 0.77, 95% CI 0.72 to 0.81). The UKBDRS also significantly outperformed three other widely used dementia risk scores originally developed in cohorts in Australia (the Australian National University Alzheimer's Disease Risk Index), Finland (the Cardiovascular Risk Factors, Ageing, and Dementia score), and the UK (Dementia Risk Score). CLINICAL IMPLICATIONS: Our risk score represents an easy-to-use tool to identify individuals at risk for dementia in the UK. Further research is required to determine the validity of this score in other populations.


Subject(s)
Biological Specimen Banks , Dementia , Humans , Australia , Risk Factors , Dementia/diagnosis , United Kingdom/epidemiology
2.
Front Aging Neurosci ; 14: 932125, 2022.
Article in English | MEDLINE | ID: mdl-36062150

ABSTRACT

Background: Automated tools for characterising dementia risk have the potential to aid in the diagnosis, prognosis, and treatment of Alzheimer's disease (AD). Here, we examined a novel machine learning-based brain atrophy marker, the AD-resemblance atrophy index (AD-RAI), to assess its test-retest reliability and further validate its use in disease classification and prediction. Methods: Age- and sex-matched 44 probable AD (Age: 69.13 ± 7.13; MMSE: 27-30) and 22 non-demented control (Age: 69.38 ± 7.21; MMSE: 27-30) participants were obtained from the Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD) dataset. Serial T1-weighted images (n = 678) from up to nine time points over a 2-year period, including 179 pairs of back-to-back scans acquired on same participants on the same day and 40 pairs of scans acquired at 2-week intervals were included. All images were automatically processed with AccuBrain® to calculate the AD-RAI. Its same-day repeatability and 2-week reproducibility were first assessed. The discriminative performance of AD-RAI was evaluated using the receiver operating characteristic curve, where DeLong's test was used to evaluate its performance against quantitative medial temporal lobe atrophy (QMTA) and hippocampal volume adjusted by intracranial volume (ICV)-proportions and ICV-residuals methods, respectively (HVR and HRV). Linear mixed-effects modelling was used to investigate longitudinal trajectories of AD-RAI and baseline AD-RAI prediction of cognitive decline. Finally, the longitudinal associations between AD-RAI and MMSE scores were assessed. Results: AD-RAI had excellent same-day repeatability and excellent 2-week reproducibility. AD-RAI's AUC (99.8%; 95%CI = [99.3%, 100%]) was equivalent to that of QMTA (96.8%; 95%CI = [92.9%, 100%]), and better than that of HVR (86.8%; 95%CI = [78.2%, 95.4%]) or HRV (90.3%; 95%CI = [83.0%, 97.6%]). While baseline AD-RAI was significantly higher in the AD group, it did not show detectable changes over 2 years. Baseline AD-RAI was negatively associated with MMSE scores and the rate of the change in MMSE scores over time. A negative longitudinal association was also found between AD-RAI values and the MMSE scores among AD patients. Conclusions: The AD-RAI represents a potential biomarker that may support AD diagnosis and be used to predict the rate of future cognitive decline in AD patients.

3.
Hum Brain Mapp ; 43(10): 3113-3129, 2022 07.
Article in English | MEDLINE | ID: mdl-35312210

ABSTRACT

Estimating age based on neuroimaging-derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine-learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age in two population-based datasets, and assessed the effects of age range, sample size and age-bias correction on the model performance metrics Pearson's correlation coefficient (r), the coefficient of determination (R2 ), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age-bias corrected metrics indicate high accuracy-also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study-specific data characteristics, and cannot be directly compared across different studies. Since age-bias corrected metrics generally indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance.


Subject(s)
Algorithms , Machine Learning , Brain/diagnostic imaging , Cohort Studies , Humans
4.
J Cereb Blood Flow Metab ; 42(4): 600-612, 2022 04.
Article in English | MEDLINE | ID: mdl-34610763

ABSTRACT

We characterize the associations of total cerebral small vessel disease (SVD) burden with brain structure, trajectories of vascular risk factors, and cognitive functions in mid-to-late life. Participants were 623 community-dwelling adults from the Whitehall II Imaging Sub-study with multi-modal MRI (mean age 69.96, SD = 5.18, 79% men). We used linear mixed-effects models to investigate associations of SVD burden with up to 25-year retrospective trajectories of vascular risk and cognitive performance. General linear modelling was used to investigate concurrent associations with grey matter (GM) density and white matter (WM) microstructure, and whether these associations were modified by cognitive status (Montreal Cognitive Asessment [MoCA] scores of < 26 vs. ≥ 26). Severe SVD burden in older age was associated with higher mean arterial pressure throughout midlife (ß = 3.36, 95% CI [0.42-6.30]), and faster cognitive decline in letter fluency (ß = -0.07, 95% CI [-0.13--0.01]), and verbal reasoning (ß = -0.05, 95% CI [-0.11--0.001]). Moreover, SVD burden was related to lower GM volumes in 9.7% of total GM, and widespread WM microstructural decline (FWE-corrected p < 0.05). The latter association was most pronounced in individuals who demonstrated cognitive impairments on MoCA (MoCA < 26; F3,608 = 2.14, p = 0.007). These findings highlight the importance of managing midlife vascular health to preserve brain structure and cognitive function in old age.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , White Matter , Adult , Aged , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition/physiology , Cognitive Dysfunction/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Retrospective Studies , White Matter/diagnostic imaging
5.
Front Aging Neurosci ; 13: 734866, 2021.
Article in English | MEDLINE | ID: mdl-34867271

ABSTRACT

Introduction: This study aimed to evaluate whether engagement in leisure activities is linked to measures of brain structure, functional connectivity, and cognition in early old age. Methods: We examined data collected from 7,152 participants of the United Kingdom Biobank (UK Biobank) study. Weekly participation in six leisure activities was assessed twice and a cognitive battery and 3T MRI brain scan were administered at the second visit. Based on responses collected at two time points, individuals were split into one of four trajectory groups: (1) stable low engagement, (2) stable weekly engagement, (3) low to weekly engagement, and (4) weekly to low engagement. Results: Consistent weekly attendance at a sports club or gym was associated with connectivity of the sensorimotor functional network with the lateral visual (ß = 0.12, 95%CI = [0.07, 0.18], FDR q = 2.48 × 10-3) and cerebellar (ß = 0.12, 95%CI = [0.07, 0.18], FDR q = 1.23 × 10-4) networks. Visiting friends and family across the two timepoints was also associated with larger volumes of the occipital lobe (ß = 0.15, 95%CI = [0.08, 0.21], FDR q = 0.03). Additionally, stable and weekly computer use was associated with global cognition (ß = 0.62, 95%CI = [0.35, 0.89], FDR q = 1.16 × 10-4). No other associations were significant (FDR q > 0.05). Discussion: This study demonstrates that not all leisure activities contribute to cognitive health equally, nor is there one unifying neural signature across diverse leisure activities.

6.
Hum Brain Mapp ; 42(6): 1626-1640, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33314530

ABSTRACT

The concept of brain maintenance refers to the preservation of brain integrity in older age, while cognitive reserve refers to the capacity to maintain cognition in the presence of neurodegeneration or aging-related brain changes. While both mechanisms are thought to contribute to individual differences in cognitive function among older adults, there is currently no "gold standard" for measuring these constructs. Using machine-learning methods, we estimated brain and cognitive age based on deviations from normative aging patterns in the Whitehall II MRI substudy cohort (N = 537, age range = 60.34-82.76), and tested the degree of correspondence between these constructs, as well as their associations with premorbid IQ, education, and lifestyle trajectories. In line with established literature highlighting IQ as a proxy for cognitive reserve, higher premorbid IQ was linked to lower cognitive age independent of brain age. No strong evidence was found for associations between brain or cognitive age and lifestyle trajectories from midlife to late life based on latent class growth analyses. However, post hoc analyses revealed a relationship between cumulative lifestyle measures and brain age independent of cognitive age. In conclusion, we present a novel approach to characterizing brain and cognitive maintenance in aging, which may be useful for future studies seeking to identify factors that contribute to brain preservation and cognitive reserve mechanisms in older age.


Subject(s)
Aging/physiology , Brain/anatomy & histology , Brain/physiology , Cognitive Reserve/physiology , Intelligence/physiology , Age Factors , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cohort Studies , Female , Humans , Life Style , Machine Learning , Magnetic Resonance Imaging , Male , Middle Aged
7.
J Psychiatr Res ; 131: 85-93, 2020 12.
Article in English | MEDLINE | ID: mdl-32949819

ABSTRACT

BACKGROUND: Trajectories of depressive symptoms over the lifespan vary between people, but it is unclear whether these differences exhibit distinct characteristics in brain structure and function. METHODS: In order to compare indices of white matter microstructure and cognitive characteristics of groups with different trajectories of depressive symptoms, we examined 774 participants of the Whitehall II Imaging Sub-study, who had completed the depressive subscale of the General Health Questionnaire up to nine times over 25 years. Twenty-seven years after the first examination, participants underwent magnetic resonance imaging to characterize white matter hyperintensities (WMH) and microstructure and completed neuropsychological tests to assess cognition. Twenty-nine years after the first examination, participants completed a further cognitive screening test. OUTCOMES: Using K-means cluster modelling, we identified five trajectory groups of depressive symptoms: consistently low scorers ("low"; n = 505, 62·5%), a subgroup with an early peak in depression scores ("early"; n = 123, 15·9%), intermediate scorers ("middle"; n = 89, 11·5%), a late symptom subgroup with an increase in symptoms towards the end of the follow-up period ("late"; n = 29, 3·7%), and consistently high scorers ("high"; n = 28, 3·6%). The late, but not the consistently high scorers, showed higher mean diffusivity, larger volumes of WMH and impaired executive function. In addition, the late subgroup had higher Framingham Stroke Risk scores throughout the follow-up period, indicating a higher load of vascular risk factors. INTERPRETATION: Our findings suggest that tracking depressive symptoms in the community over time may be a useful tool to identify phenotypes that show different etiologies and cognitive and brain outcomes.


Subject(s)
Depression , White Matter , Brain/diagnostic imaging , Cognition , Depression/diagnostic imaging , Depression/epidemiology , Magnetic Resonance Imaging , Neuropsychological Tests , White Matter/diagnostic imaging
8.
JAMA Netw Open ; 3(8): e2013793, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32816032

ABSTRACT

Importance: Prior neuroimaging studies have found that late-life participation in cognitive (eg, reading) and social (eg, visiting friends and family) leisure activities are associated with magnetic resonance imaging (MRI) markers of the aging brain, but little is known about the neural and cognitive correlates of changes in leisure activities during the life span. Objectives: To examine trajectories of cognitive and social activities from midlife to late life and evaluate whether these trajectories are associated with brain structure, functional connectivity, and cognition. Design, Setting, and Participants: This prospective cohort included participants enrolled in the Whitehall II study and its MRI substudy based in the UK. Participants provided information on their leisure activities at 5 times during calendar years 1997 to 1999, 2002 to 2004, 2006, 2007 to 2009, and 2011 to 2013 and underwent MRI and cognitive battery testing from January 1, 2012, to December 31, 2016. Data analysis was performed from October 7, 2017, to July 15, 2019. Main Outcome and Measures: Growth curve models and latent class growth analysis were used to identify longitudinal trajectories of cognitive and social activities. Multiple linear regression was used to evaluate associations between activity trajectories and gray matter, white matter microstructure, functional connectivity, and cognition. Results: A total of 574 individuals (468 [81.5%] men; mean [SD] age, 69.9 [4.9] years; median Montreal Cognitive Assessment score, 28 [interquartile range, 26-28]) were included in the present analysis. During a mean (SD) of 15 (4.2) years, cognitive and social activity levels increased during midlife before reaching a plateau in late life. Both baseline (global cognition: unstandardized ß [SE], 0.955 [0.285], uncorrected P = .001; executive function: ß [SE], 1.831 [0.499], uncorrected P < .001; memory: ß [SE], 1.394 [0.550], uncorrected P = .01; processing speed: ß [SE], 1.514 [0.528], uncorrected P = .004) and change (global cognition: ß [SE], -1.382 [0.492], uncorrected P = .005, executive function: ß [SE], -2.219 [0.865], uncorrected P = .01; memory: ß [SE], -2.355 [0.948], uncorrected P = .01) in cognitive activities were associated with multiple domains of cognition as well as global gray matter volume (ß [SE], -0.910 [0.388], uncorrected P = .02). Baseline (ß [SE], 1.695 [0.525], uncorrected P = .001) and change (ß [SE], 2.542 [1.026], uncorrected P = .01) in social activities were associated only with executive function, in addition to voxelwise measures of functional connectivity that involved sensorimotor (quadratic change in social activities: number of voxels, 306; P = 0.01) and temporoparietal (linear change in social activities: number of voxels, 16; P = .02) networks. Otherwise, no voxelwise associations were found with gray matter, white matter, or resting-state functional connectivity. False discovery rate corrections for multiple comparisons suggested that the association between cognitive activity levels and executive function was robust (ß [SE], 1.831 [0.499], false discovery rate P < .001). Conclusions and Relevance: The findings suggest that a life course approach may delineate the association between leisure activities and cognitive and brain health and that interventions aimed at improving and maintaining cognitive engagement may be valuable for the cognitive health of community-dwelling older adults.


Subject(s)
Aging/physiology , Brain , Cognition/physiology , Leisure Activities , Social Behavior , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies
9.
Hum Brain Mapp ; 41(16): 4718-4729, 2020 11.
Article in English | MEDLINE | ID: mdl-32767637

ABSTRACT

Pregnancy involves maternal brain adaptations, but little is known about how parity influences women's brain aging trajectories later in life. In this study, we replicated previous findings showing less apparent brain aging in women with a history of childbirths, and identified regional brain aging patterns linked to parity in 19,787 middle- and older-aged women. Using novel applications of brain-age prediction methods, we found that a higher number of previous childbirths were linked to less apparent brain aging in striatal and limbic regions. The strongest effect was found in the accumbens-a key region in the mesolimbic reward system, which plays an important role in maternal behavior. While only prospective longitudinal studies would be conclusive, our findings indicate that subcortical brain modulations during pregnancy and postpartum may be traceable decades after childbirth.


Subject(s)
Aging/pathology , Brain/pathology , Corpus Striatum/pathology , Limbic System/pathology , Parity , Aged , Brain/diagnostic imaging , Corpus Striatum/diagnostic imaging , Female , Humans , Limbic System/diagnostic imaging , Magnetic Resonance Imaging , Maternal Behavior/physiology , Middle Aged , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/pathology , Pregnancy
10.
Neuroimage ; 222: 117292, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32835819

ABSTRACT

Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II (WHII) MRI cohort using machine learning and imaging-derived measures of gray matter (GM) morphology, white matter microstructure (WM), and resting state functional connectivity (FC). The results showed that the prediction accuracy improved when multiple imaging modalities were included in the model (R2 = 0.30, 95% CI [0.24, 0.36]). The modality-specific GM and WM models showed similar performance (R2 = 0.22 [0.16, 0.27] and R2 = 0.24 [0.18, 0.30], respectively), while the FC model showed the lowest prediction accuracy (R2 = 0.002 [-0.005, 0.008]), indicating that the FC features were less related to chronological age compared to structural measures. Follow-up analyses showed that FC predictions were similarly low in a matched sub-sample from UK Biobank, and although FC predictions were consistently lower than GM predictions, the accuracy improved with increasing sample size and age range. Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with brain aging in the WHII cohort. Blood pressure showed a stronger association with white matter compared to gray matter, while no differences in the associations of alcohol intake and stroke risk with these modalities were observed. In conclusion, machine-learning based brain age prediction can reduce the dimensionality of neuroimaging data to provide meaningful biomarkers of individual brain aging. However, model performance depends on study-specific characteristics including sample size and age range, which may cause discrepancies in findings across studies.


Subject(s)
Aging , Brain/physiology , Cardiovascular Diseases/physiopathology , Cognition/physiology , Aged , Female , Gray Matter/physiopathology , Heart Disease Risk Factors , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods , Risk Factors , White Matter/physiology
12.
Sleep ; 43(5)2020 05 12.
Article in English | MEDLINE | ID: mdl-31904084

ABSTRACT

STUDY OBJECTIVES: To examine the association between sleep duration trajectories over 28 years and measures of cognition, gray matter volume, and white matter microstructure. We hypothesize that consistently meeting sleep guidelines that recommend at least 7 hours of sleep per night will be associated with better cognition, greater gray matter volumes, higher fractional anisotropy, and lower radial diffusivity values. METHODS: We studied 613 participants (age 42.3 ± 5.03 years at baseline) who self-reported sleep duration at five time points between 1985 and 2013, and who had cognitive testing and magnetic resonance imaging administered at a single timepoint between 2012 and 2016. We applied latent class growth analysis to estimate membership into trajectory groups based on self-reported sleep duration over time. Analysis of gray matter volumes was carried out using FSL Voxel-Based-Morphometry and white matter microstructure using Tract Based Spatial Statistics. We assessed group differences in cognitive and MRI outcomes using nonparametric permutation testing. RESULTS: Latent class growth analysis identified four trajectory groups, with an average sleep duration of 5.4 ± 0.2 hours (5%, N = 29), 6.2 ± 0.3 hours (37%, N = 228), 7.0 ± 0.2 hours (45%, N = 278), and 7.9 ± 0.3 hours (13%, N = 78). No differences in cognition, gray matter, and white matter measures were detected between groups. CONCLUSIONS: Our null findings suggest that current sleep guidelines that recommend at least 7 hours of sleep per night may not be supported in relation to an association between sleep patterns and cognitive function or brain structure.


Subject(s)
White Matter , Adult , Brain/diagnostic imaging , Cognition , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , Prospective Studies , Sleep , White Matter/diagnostic imaging
13.
Biol Psychol ; 106: 39-49, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25666744

ABSTRACT

Two response precuing experiments were conducted to investigate effects of musical skill level on the ability to pre- and re-programme simple movements. Participants successfully used advance information to prepare forthcoming responses and showed response slowing when precue information was invalid rather than valid. This slowing was, however, only observed for partially invalid but not fully invalid precues. Musicians were generally faster than non-musicians, but no group differences in the efficiency of movement pre-programming or re-programming were observed. Interestingly, only musicians exhibited a significant foreperiod lateralized readiness potential (LRP) when response hand was pre-specified or full advance information was provided. These LRP findings suggest increased effector-specific motor preparation in musicians than non-musicians. However, here the levels of effector-specific preparation did not predict preparatory advantages observed in behaviour. In sum, combining the response precuing and ERP paradigms serves a valuable tool to examine influences of musical training on movement pre- or re-programming processes.


Subject(s)
Evoked Potentials/physiology , Learning/physiology , Movement/physiology , Music/psychology , Adolescent , Adult , Contingent Negative Variation/physiology , Cues , Electroencephalography , Female , Functional Laterality/physiology , Humans , Male , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...