Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Microbiol ; 84: 103271, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421780

ABSTRACT

Fresh produce causes most foodborne outbreaks in the USA, and it is also considered a hazardous food product in other areas of the world such as Europe. The outbreaks attributed to fresh produce increase the focus of producers on hygiene to minimize exposure to food hazards. The fresh produce industry has the urgent need to detect if there are production lots contaminated with pathogenic microorganisms before distribution. Although the industry is mostly using end-product testing for the detection of target microorganisms, previous studies have evaluated the suitability of different sampling points within the production line of a fresh-cut processing plant. In the present study, the centrifuge effluent water was assessed as an alternative sampling point to end-product testing. E. coli was selected as an index microorganism of the presence of pathogens. The presence of E. coli was assessed in centrifuge effluent water, and fresh-cut lettuce from a commercial fresh-cut produce processing line (n = 95). The rate of false positives and negatives, as well as the specificity, sensitivity, and efficiency of the alternative method were calculated. The mean population of E. coli in positive water samples was 0.86 log cfu/100 mL, while the mean population of E. coli in positive fresh-cut lettuce samples was 0.23 log cfu/g. The proportion of positive samples in centrifuge effluent water and lettuce was similar (≈20%), and most of the results in both matrices were coincident (81.1%). However, the alternative method was not reliable due to its low sensitivity, as only 47.6% of the lettuce samples positive for E. coli could be matched with positive water samples.


Subject(s)
Escherichia coli O157/isolation & purification , Food Contamination/analysis , Food Microbiology/methods , Lactuca/microbiology , Water/analysis , Centrifugation , Colony Count, Microbial , Food Handling/methods , Raw Foods/microbiology
2.
J Sci Food Agric ; 98(8): 2981-2988, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29171869

ABSTRACT

BACKGROUND: Irrigation water disinfection reduces the microbial load but it might lead to the formation and accumulation of disinfection by-products (DBPs) in the crop. If DBPs are present in the irrigation water, they can accumulate in the crop, particularly after the regrowth, and be affected by the postharvest handling such as washing and storage. To evaluate the potential accumulation of DBPs, baby lettuce was grown using irrigation water treated with electrolysed water (EW) in a commercial greenhouse over three consecutive harvests and regrowths. The impact of postharvest practices such as washing and storage on DBP content was also assessed. RESULTS: Use of EW caused the accumulation of chlorates in irrigation water (0.02-0.14 mg L-1 ), and in the fresh produce (0.05-0.10 mg kg-1 ). On the other hand, the disinfection treatment had minor impact regarding the presence of trihalomethanes (THMs) in water (0.3-8.7 µg L-1 max), and in baby lettuce (0.3-2.9 µg kg-1 max). CONCLUSIONS: Disinfection of irrigation water with EW caused the accumulation of chlorates in the crop reaching levels higher than the current maximum residual limit established in the EU legislation for leafy greens. © 2017 Society of Chemical Industry.


Subject(s)
Disinfectants/analysis , Lactuca/chemistry , Water/chemistry , Agricultural Irrigation , Chlorates/analysis , Disinfection , Lactuca/growth & development , Water Pollutants, Chemical/analysis , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL