Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 57(16): 10424-10430, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30067343

ABSTRACT

The unique manganese-calcium catalyst in photosystem II (PSII) is the natural paragon for efficient light-driven water oxidation to yield O2. The oxygen-evolving complex (OEC) in the dark-stable state (S1) comprises a Mn4CaO4 core with five metal-bound water species. Binding and modification of the water molecules that are substrates of the water-oxidation reaction is mechanistically crucial but controversially debated. Two recent crystal structures of the OEC in its highest oxidation state (S3) show either a vacant Mn coordination site or a bound peroxide species. For purified PSII at room temperature, we collected Mn Kα X-ray emission spectra of the S0, S1, S2, and S3 intermediates in the OEC cycle, which were analyzed by comparison to synthetic Mn compounds, spectral simulations, and OEC models from density functional theory. Our results contrast both crystallographic structures. They indicate Mn oxidation in three S-transitions and suggest additional water binding at a previously open Mn coordination site. These findings exclude Mn reduction and render peroxide formation in S3 unlikely.

2.
Biochemistry ; 55(30): 4197-211, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27377097

ABSTRACT

In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kß1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kß1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kß1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.


Subject(s)
Manganese/chemistry , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Calcium/chemistry , Kinetics , Models, Chemical , Models, Molecular , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis , Spectrometry, X-Ray Emission , Spinacia oleracea/metabolism , Temperature
3.
Phys Chem Chem Phys ; 16(24): 11965-75, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24647521

ABSTRACT

Two types of manganese oxides have been prepared by hydrolysis of tetranuclear Mn(iii) complexes in the presence or absence of phosphate ions. The oxides have been characterized structurally using X-ray absorption spectroscopy and functionally by O2 evolution measurements. The structures of the oxides prepared in the absence of phosphate are dominated by di-µ-oxo bridged manganese ions that form layers with limited long-range order, consisting of edge-sharing MnO6 octahedra. The average manganese oxidation state is +3.5. The structure of these oxides is closely related to other manganese oxides reported as water oxidation catalysts. They show high oxygen evolution activity in a light-driven system containing [Ru(bpy)3](2+) and S2O8(2-) at pH 7. In contrast, the oxides formed by hydrolysis in the presence of phosphate ions contain almost no di-µ-oxo bridged manganese ions. Instead the phosphate groups are acting as bridges between the manganese ions. The average oxidation state of manganese ions is +3. This type of oxide has much lower water oxidation activity in the light-driven system. Correlations between different structural motifs and the function as a water oxidation catalyst are discussed and the lower activity in the phosphate containing oxide is linked to the absence of protonable di-µ-oxo bridges.


Subject(s)
Manganese Compounds/chemistry , Oxides/chemistry , Phosphates/chemistry , Water/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Spectrophotometry, Infrared , X-Ray Absorption Spectroscopy
5.
Inorg Chem ; 51(4): 2332-7, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22276945

ABSTRACT

The carboxylate stretching frequencies of two high-valent, di-µ-oxido bridged, manganese dimers has been studied with IR spectroscopy in three different oxidation states. Both complexes contain one monodentate carboxylate donor to each Mn ion, in one complex, the carboxylate is coordinated perpendicular to the Mn-(µ-O)(2)-Mn plane, and in the other complex, the carboxylate is coordinated in the Mn-(µ-O)(2)-Mn plane. For both complexes, the difference between the asymmetric and the symmetric carboxylate stretching frequencies decrease for both the Mn(2)(IV,IV) to Mn(2)(III,IV) transition and the Mn(2)(III,IV) to Mn(2)(III,III) transition, with only minor differences observed between the two arrangements of the carboxylate ligand versus the Mn-(µ-O)(2)-Mn plane. The IR spectra also show that both carboxylate ligands are affected for each one electron reduction, i.e., the stretching frequency of the carboxylate coordinated to the Mn ion that is not reduced also shifts. These results are discussed in relation to FTIR studies of changes in carboxylate stretching frequencies in a one electron oxidation step of the water oxidation complex in Photosystem II.


Subject(s)
Manganese/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Carboxylic Acids/chemistry , Dimerization , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
6.
Inorg Chem ; 50(8): 3425-30, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21428420

ABSTRACT

The synthesis, isolation, and characterization of two high-valent manganese dimers with isomeric ligands are reported. The complexes are synthesized and crystallized from solutions of low-valent precursors exposed to tert-butyl hydroperoxide. The crystal structures display centrosymmetric complexes consisting of Mn(2)(IV,IV)(µ-O)(2) cores, with one ligand coordinating to each manganese. The ligands coordinate with the diaminoethane backbone, the carboxylate, and one of the two pyridines, while the second pyridine is noncoordinating. The activity of these complexes, under water oxidation conditions, is discussed in light of a proposed mechanism for water oxidation, in which this type of complexes have been suggested as a key intermediate.

7.
Dalton Trans ; 39(45): 11035-44, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-20957239

ABSTRACT

In this work we report the synthesis of two novel manganese complexes, [L1(3)Mn(II)(6)](ClO(4))(6) (1·(ClO(4))(6)) and [L2Mn(II)(2)(µ-OAc)(µ-Cl)](ClO(4))(2) (2·(ClO(4))(2)), where L1(2-) is the 2,2'-(1,3-phenylenebis(methylene))bis((2-(bis(pyridin-2-ylmethyl)amino)ethyl)azanediyl)diacetic acid anion and L2 is N1,N1'-(1,3-phenylenebis(methylene))bis(N2,N2'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine). The ligands Na(2)L1 and L2 are built on the same backbone, L2 only contains nitrogen donors, while two carboxylate arms have been introduced in Na(2)L1. The two complexes have been characterized by single-crystal X-ray diffraction, magnetic susceptibility, EPR spectroscopy, and electrochemistry. X-Ray crystallography revealed that 1 is a manganese(II) hexamer and 2 is a manganese(II) dimer featuring an unprecedented mono-µ-acetato, mono-µ-chlorido bridging motif. The ability of the complexes to catalyse H(2)O(2) disproportionation, thereby acting as models for manganese catalases, has been investigated and compared to the activity of two other related manganese complexes. The introduction of carboxylate donors in the ligands, leading to increased denticity, resulted in a drop in H(2)O(2) disproportionation activity.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Catalase/chemistry , Catalase/metabolism , Manganese/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Electrochemistry , Hydrogen Peroxide/chemistry , Magnetics , Models, Molecular , Molecular Conformation , Solutions
8.
Dalton Trans ; (45): 10044-54, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19904432

ABSTRACT

In this work we report the preparation of two metallamacrocyclic tetranuclear manganese(II) complexes, [L1(4)Mn4](ClO4)4 and [L2(4)Mn4](ClO4)4 where L1 and L2 are the anions of the heptadentate ligands 2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)acetic acid and 2-(benzyl(2-(bis(pyridin-2-ylmethyl)amino)ethyl)amino)acetic acid), respectively. The complexes have been fully characterized by ESI-MS, elemental analysis, single-crystal X-ray diffraction, magnetic susceptibility, and EPR spectroscopy. Electrochemical reactions as well as reactions with different chemical redox reagents have been performed and a reversible two electron oxidation per manganese ion has been identified. The reaction of [L1(4)Mn4](ClO4)4 with oxone or cerium(IV) results in the evolution of oxygen which makes this system interesting for future studies in the search for a functional mimic of the oxygen evolving complex in Photosystem II.


Subject(s)
Biomimetics , Manganese/chemistry , Models, Biological , Organometallic Compounds/chemistry , Photosystem II Protein Complex/chemistry , Catalysis , Crystallography, X-Ray , Electrochemistry , Ligands , Magnetics , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxygen/chemistry
9.
Acc Chem Res ; 42(12): 1899-909, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19757805

ABSTRACT

Photosynthesis is performed by a multitude of organisms, but in nearly all cases, it is variations on a common theme: absorption of light followed by energy transfer to a reaction center where charge separation takes place. This initial form of chemical energy is stabilized by the biosynthesis of carbohydrates. To produce these energy-rich products, a substrate is needed that feeds in reductive equivalents. When photosynthetic microorganisms learned to use water as a substrate some 2 billion years ago, a fundamental barrier against unlimited use of solar energy was overcome. The possibility of solar energy use has inspired researchers to construct artificial photosynthetic systems that show analogy to parts of the intricate molecular machinery of photosynthesis. Recent years have seen a reorientation of efforts toward creating integrated light-to-fuel systems that can use solar energy for direct synthesis of energy-rich compounds, so-called solar fuels. Sustainable production of solar fuels is a long awaited development that promises extensive solar energy use combined with long-term storage. The stoichiometry of water splitting into molecular oxygen, protons, and electrons is deceptively simple; achieving it by chemical catalysis has proven remarkably difficult. The reaction center Photosystem II couples light-induced charge separation to an efficient molecular water-splitting catalyst, a Mn(4)Ca complex, and is thus an important template for biomimetic chemistry. In our aims to design biomimetic manganese complexes for light-driven water oxidation, we link photosensitizers and charge-separation motifs to potential catalysts in supramolecular assemblies. In photosynthesis, production of carbohydrates demands the delivery of multiple reducing equivalents to CO(2). In contrast, the two-electron reduction of protons to molecular hydrogen is much less demanding. Virtually all microorganisms have enzymes called hydrogenases that convert protons to hydrogen, many of them with good catalytic efficiency. The catalytic sites of hydrogenases are now the center of attention of biomimetic efforts, providing prospects for catalytic hydrogen production with inexpensive metals. Thus, we might complete the water-to-fuel conversion: light + 2H(2)O --> 2H(2) + O(2). This reaction formula is to some extent already elegantly fulfilled by cyanobacteria and green algae, water-splitting photosynthetic microorganisms that under certain conditions also can produce hydrogen. An alternative route to hydrogen from solar energy is therefore to engineer these organisms to produce hydrogen more efficiently. This Account describes our original approach to combine research in these two fields: mimicking structural and functional principles of both Photosystem II and hydrogenases by synthetic chemistry and engineering cyanobacteria to become better hydrogen producers and ultimately developing new routes toward synthetic biology.


Subject(s)
Biomimetics/methods , Cyanobacteria/metabolism , Solar Energy , Chlorophyta/metabolism , Electron Transport , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogenase/metabolism , Iron/chemistry , Manganese/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Photosynthesis , Photosystem II Protein Complex/metabolism , Ruthenium/chemistry , Titanium/chemistry , Water/chemistry , Water/metabolism
10.
Dalton Trans ; (38): 4258-61, 2007 Oct 10.
Article in English | MEDLINE | ID: mdl-17893814

ABSTRACT

A set of six multinuclear manganese complexes was screened for the ability to catalyse reactions yielding O(2) under coherent experimental conditions; we identify a much larger number of manganese compounds than previously known that catalyse oxygen formation.

11.
J Inorg Biochem ; 100(5-6): 1139-46, 2006 May.
Article in English | MEDLINE | ID: mdl-16574232

ABSTRACT

Simulation of X- and Q-band electron paramagnetic resonance (EPR) spectra of an unsymmetric dinuclear [Mn(2)(II,III)L(mu-OAc)(2)]ClO(4) complex (1), (L is the dianion of 2-{[N,N-bis(2-pyridylmethyl)amino]methyl}-6-{[N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amino]methyl}-4-methylphenol) was performed using one consistent set of simulation parameters. Rhombic g-tensors and hyperfine tensors were necessary to obtain satisfactory simulation of the EPR spectra. The anisotropy of the effective hyperfine tensors of each individual (55)Mn ion was further analyzed in terms of intrinsic hyperfine tensors. Detailed analysis shows that the hyperfine anisotropy of the Mn(III) ion is a result of the Jahn-Teller effect and thus an inherent character. In contrast, the anomalous hyperfine anisotropy of the Mn(II) ion is attributed as being transferred from the Mn(III) ion through the spin exchange interaction. The anisotropy parameter for the Mn(II) is deduced as D(II)=-1.26+/-0.2cm(-1). This is the first reported D(II) value for a Mn(II) ion in a weakly exchange coupled mixed-valence Mn(2)(II,III) complex with a bis-mu-acetato-bridge. The [see text] electronic configuration of the Mn(III) ion in 1 is revealed by the negative sign of its intrinsic hyperfine tensor anisotropy, Deltaa(III)=a(z)-a(x,y)=-46cm(-1). Lower spectral resolution of the Q-band EPR spectrum as compared to the X-band EPR spectrum is associated to large line width broadening of the x- and y-components in contrast to the z-component. The origins of the unequal distribution of line width between the z- and x-, y-components are discussed.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Manganese/chemistry , Models, Molecular
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 63(3): 541-3, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16024278

ABSTRACT

By using high frequency high field EPR spectroscopy we demonstrate how to extract the sign of magnetic anisotropy parameters pertinent to excited spin multiplets of antiferromagnetically coupled clusters. The method is demonstrated on a manganese(II) dimer.


Subject(s)
Anisotropy , Electron Spin Resonance Spectroscopy/methods , Manganese/chemistry , Chemical Phenomena , Chemistry , Dimerization , Iron/chemistry , Magnetics , Manganese Compounds/chemistry , Models, Statistical , Spin Labels
13.
J Am Chem Soc ; 127(49): 17504-15, 2005 Dec 14.
Article in English | MEDLINE | ID: mdl-16332103

ABSTRACT

The photoinduced electron-transfer reactions in a Mn2II,II-RuII-NDI triad (1) ([Mn2(bpmp)(OAc)2]+, bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenolate and OAc = acetate, RuII = tris-bipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn2II,III) and the reduced naphthalenediimide (NDI*-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)3]2+ intermediate states and the NDI*- radical in a wide temperature range. The average lifetime of the NDI*- radical is ca. 600 micros at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)3]2+ photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximately 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (Delta-G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.

14.
J Inorg Biochem ; 98(5): 733-45, 2004 May.
Article in English | MEDLINE | ID: mdl-15134919

ABSTRACT

Two dinuclear manganese complexes, [Mn(2)BPMP(mu-OAc)(2)].ClO(4) (1, where BPMP is the anion of 2,6-bis([N,N-di(2-pyridinemethyl)amino]methyl)-4-methylphenol) and [Mn(2)L(mu-OAc)(2)].ClO(4) (2, where L is the trianion of 2,6-bis([N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2-pyridinemethyl)amino]methyl)-4-methylphenol), undergo several oxidations by laser flash photolysis, using ruthenium(II)-tris-bipyridine (tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate) as photo-sensitizer and penta-amminechlorocobalt(III) chloride as external electron acceptor. In both complexes stepwise electron transfer was observed. In 1, four Mn-valence states from the initial Mn(2)(II,II) to the Mn(2)(III,IV) state are available. In 2, three oxidation steps are possible from the initial Mn(2)(III,III)state. The last step is accomplished in the Mn(2)(IV,IV) state, which results in a phenolate radical. For the first time we provide firm spectral evidence for formation of the first intermediate state, Mn(2)(II,III), in 1 during the stepwise light-induced oxidation. Observation of Mn(2)(II,III) is dependent on conditions that sustain the mu-acetato bridges in the complex, i.e., by forming Mn(2)(II,III) in dry acetonitrile, or by addition of high concentrations of acetate in aqueous solutions. We maintain that the presence of water is necessary for the transition to higher oxidation states, e.g., Mn(2)(III,III) and Mn(2)(III,IV) in 1, due to a bridging ligand exchange reaction which takes place in the Mn(2)(II,III) state in water solution. Water is also found to be necessary for reaching the Mn(2)(IV,IV) state in 2, which explains why this state was not reached by electrolysis in our earlier work (Eur. J. Inorg. Chem (2002) 2965). In 2, the extra coordinating oxygen atoms facilitate the stabilization of higher Mn valence states than in 1, resulting in formation of a stable Mn(2)(IV,IV) without disintegration of 2. In addition, further oxidation of 2, led to the formation of a phenolate radical (g = 2.0046) due to ligand oxidation. Its spectral width (8 mT) and very fast relaxation at 15 K indicates that this radical is magnetically coupled to the Mn(2)(IV,IV) center.

SELECTION OF CITATIONS
SEARCH DETAIL