Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3840, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714698

ABSTRACT

As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.


Subject(s)
Circadian Clocks , Circadian Rhythm , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Circadian Rhythm/genetics , Circadian Clocks/genetics , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Skin/metabolism , Software , Fibroblasts/metabolism , Sequence Analysis, RNA/methods
2.
J Invest Dermatol ; 143(9): 1667-1677, 2023 09.
Article in English | MEDLINE | ID: mdl-37612031

ABSTRACT

Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.


Subject(s)
Research Personnel , Skin , Humans , Consensus
3.
Nature ; 618(7966): 808-817, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344645

ABSTRACT

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Subject(s)
Hair , Melanocytes , Signal Transduction , Animals , Mice , Hair/cytology , Hair/growth & development , Hair Follicle/cytology , Hair Follicle/physiology , Hyaluronan Receptors/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Nevus/metabolism , Nevus/pathology , Osteopontin/metabolism , Stem Cells/cytology
4.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37066246

ABSTRACT

As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tau-Fisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's out-standing performance in both bulk and single-cell transcriptomic data collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNA-seq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNA-seq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.

5.
Stem Cell Reports ; 18(5): 1227-1243, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37084727

ABSTRACT

The molecular mechanisms allowing hair follicles to periodically activate their stem cells (HFSCs) are incompletely characterized. Here, we identify the transcription factor IRX5 as a promoter of HFSC activation. Irx5-/- mice have delayed anagen onset, with increased DNA damage and diminished HFSC proliferation. Open chromatin regions form near cell cycle progression and DNA damage repair genes in Irx5-/- HFSCs. DNA damage repair factor BRCA1 is an IRX5 downstream target. Inhibition of FGF kinase signaling partially rescues the anagen delay in Irx5-/- mice, suggesting that the Irx5-/- HFSC quiescent phenotype is partly due to failure to suppress Fgf18 expression. Interfollicular epidermal stem cells also show decreased proliferation and increased DNA damage in Irx5-/-mice. Consistent with a role for IRX5 as a promoter of DNA damage repair, we find that IRX genes are upregulated in many cancer types and that there is a correlation between IRX5 and BRCA1 expression in breast cancer.


Subject(s)
Hair Follicle , Stem Cells , Mice , Animals , Hair Follicle/metabolism , Stem Cells/metabolism , Signal Transduction , Gene Expression Regulation , DNA Damage , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
6.
Stem Cells ; 41(4): 319-327, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36740940

ABSTRACT

First described in the early 20th century, diurnal oscillations in stem cell proliferation exist in multiple internal epithelia, including in the gastrointestinal tract, and in the epidermis. In the mouse epidermis, 3- to 4-fold more stem cells are in S-phase during the night than during the day. More recent work showed that an intact circadian clock intrinsic to keratinocytes is required for these oscillations in epidermal stem cell proliferation. The circadian clock also regulates DNA excision repair and DNA damage in epidermal stem cells in response to ultraviolet B radiation. During skin inflammation, epidermal stem cell proliferation is increased and diurnal oscillations are suspended. Here we discuss possible reasons for the evolution of this stem cell phenomenon. We argue that the circadian clock coordinates intermediary metabolism and the cell cycle in epidermal stem cells to minimize the accumulation of DNA damage from metabolism-generated reactive oxygen species. Circadian disruption, common in modern society, leads to asynchrony between metabolism and the cell cycle, and we speculate this will lead to oxidative DNA damage, dysfunction of epidermal stem cells, and skin aging.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Keratinocytes , Stem Cells/metabolism , Cell Division
7.
Cell Rep ; 42(1): 111994, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36732947

ABSTRACT

Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.


Subject(s)
Keratinocytes , Skin , Humans , Cell Differentiation , Hand , Cells, Cultured , Epidermis
8.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35900871

ABSTRACT

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.


Subject(s)
Epidermis , Single-Cell Analysis , Carbon/metabolism , Ceramides/metabolism , Epidermis/metabolism , Humans , Keratinocytes/metabolism
9.
J Invest Dermatol ; 142(12): 3211-3221.e2, 2022 12.
Article in English | MEDLINE | ID: mdl-35870560

ABSTRACT

The M3 muscarinic acetylcholine receptor is predominantly expressed in the basal epidermal layer where it mediates the effects of the autocrine/paracrine cytotransmitter acetylcholine. Patients with the autoimmune blistering disease pemphigus develop autoantibodies to M3 muscarinic acetylcholine receptor and show alterations in keratinocyte adhesion, proliferation, and differentiation, suggesting that M3 muscarinic acetylcholine receptor controls these cellular functions. Chmr3-/- mice display altered epidermal morphology resembling that seen in patients with pemphigus vulgaris. In this study, we characterized the cellular and molecular mechanisms through which M3 muscarinic acetylcholine receptor controls epidermal structure and function. We used single-cell RNA sequencing to evaluate keratinocyte heterogeneity and identify differentially expressed genes in specific subpopulations of epidermal cells in Chmr3-/- neonatal mice. We found that Chmr3-/- mice feature abnormal epidermal morphology characterized by accumulation of nucleated basal cells, shrinkage of basal keratinocytes, and enlargement of intercellular spaces. These morphologic changes were associated with upregulation of cell proliferation genes and downregulation of genes contributing to epidermal differentiation, extracellular matrix formation, intercellular adhesion, and cell arrangement. These findings provide, to our knowledge, previously unreported insights into how acetylcholine controls epidermal differentiation and lay a groundwork for future translational studies evaluating the therapeutic potential of cholinergic drugs in dermatology.


Subject(s)
Acetylcholine , Pemphigus , Receptor, Muscarinic M3 , Animals , Mice , Acetylcholine/metabolism , Epidermal Cells/metabolism , Epidermis/metabolism , Keratinocytes/metabolism , Receptor, Muscarinic M3/metabolism
10.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34494554

ABSTRACT

The migrating keratinocyte wound front is required for skin wound closure. Despite significant advances in wound healing research, we do not fully understand the molecular mechanisms that orchestrate collective keratinocyte migration. Here, we show that, in the wound front, the epidermal transcription factor Grainyhead like-3 (GRHL3) mediates decreased expression of the adherens junction protein E-cadherin; this results in relaxed adhesions between suprabasal keratinocytes, thus promoting collective cell migration and wound closure. Wound fronts from mice lacking GRHL3 in epithelial cells (Grhl3-cKO) have lower expression of Fascin-1 (FSCN1), a known negative regulator of E-cadherin. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) on wounded keratinocytes shows decreased wound-induced chromatin accessibility near the Fscn1 gene in Grhl3-cKO mice, a region enriched for GRHL3 motifs. These data reveal a wound-induced GRHL3/FSCN1/E-cadherin pathway that regulates keratinocyte-keratinocyte adhesion during wound-front migration; this pathway is activated in acute human wounds and is altered in diabetic wounds in mice, suggesting translational relevance.


Subject(s)
Carrier Proteins/genetics , Cell Adhesion/genetics , DNA-Binding Proteins/genetics , Epidermis/injuries , Gene Expression Regulation , Microfilament Proteins/genetics , RNA/genetics , Transcription Factors/genetics , Wound Healing , Animals , Carrier Proteins/biosynthesis , Cell Line , Cell Movement/genetics , DNA-Binding Proteins/biosynthesis , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Keratinocytes/metabolism , Mice , Microfilament Proteins/biosynthesis , Transcription Factors/biosynthesis
11.
FEBS Lett ; 595(19): 2413-2436, 2021 10.
Article in English | MEDLINE | ID: mdl-34535902

ABSTRACT

Organisms have an evolutionarily conserved internal rhythm that helps them anticipate and adapt to daily changes in the environment. Synchronized to the light-dark cycle with a period of around 24 hours, the timing of the circadian clock is set by light-triggering signals sent from the retina to the suprachiasmatic nucleus. Other inputs, including food intake, exercise, and temperature, also affect clocks in peripheral tissues, including skin. Here, we review the intricate interplay between the core clock network and fundamental physiological processes in skin such as homeostasis, regeneration, and immune- and stress responses. We illustrate the effect of feeding time on the skin circadian clock and skin functions, a previously overlooked area of research. We then discuss works that relate the circadian clock and its disruption to skin diseases, including skin cancer, sunburn, hair loss, aging, infections, inflammatory skin diseases, and wound healing. Finally, we highlight the promise of circadian medicine for skin disease prevention and management.


Subject(s)
Circadian Clocks , Skin Diseases/physiopathology , Animals , Humans
12.
Exp Dermatol ; 30(8): 1004-1008, 2021 08.
Article in English | MEDLINE | ID: mdl-34223679
13.
J Invest Dermatol ; 141(8): 1881-1884, 2021 08.
Article in English | MEDLINE | ID: mdl-34303468

ABSTRACT

Regulatory regions of the genome harbor most genetic variance associated with skin diseases. Because gene-regulatory networks are cell-type and cell-state specific and are subject to variation from the genetic background, current cell models that link genetic variation to gene expression are imperfect. Emerging single-cell genomics approaches may provide a new approach to understand the genetics of common skin diseases.


Subject(s)
Psoriasis , Skin Diseases , Gene Regulatory Networks , Genomics , Humans
14.
J Invest Dermatol ; 141(10): 2436-2448, 2021 10.
Article in English | MEDLINE | ID: mdl-33864770

ABSTRACT

Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.


Subject(s)
Epidermis/pathology , Inflammation/etiology , Interleukin-1 Receptor-Associated Kinases/physiology , Cell Differentiation , Cells, Cultured , Dermatitis, Atopic/etiology , Humans , NF-kappa B/physiology , Psoriasis/etiology , Severity of Illness Index , Signal Transduction , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology
15.
Nat Commun ; 11(1): 5434, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116143

ABSTRACT

The interfollicular epidermis (IFE) forms a water-tight barrier that is often disrupted in inflammatory skin diseases. During homeostasis, the IFE is replenished by stem cells in the basal layer that differentiate as they migrate toward the skin surface. Conventionally, IFE differentiation is thought to be stepwise as reflected in sharp boundaries between its basal, spinous, granular and cornified layers. The transcription factor GRHL3 regulates IFE differentiation by transcriptionally activating terminal differentiation genes. Here we use single cell RNA-seq to show that murine IFE differentiation is best described as a single step gradualistic process with a large number of transition cells between the basal and spinous layer. RNA-velocity analysis identifies a commitment point that separates the plastic basal and transition cell state from unidirectionally differentiating cells. We also show that in addition to promoting IFE terminal differentiation, GRHL3 is essential for suppressing epidermal stem cell expansion and the emergence of an abnormal stem cell state by suppressing Wnt signaling in stem cells.


Subject(s)
DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epidermal Cells/cytology , Epidermal Cells/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Cell Differentiation , Cell Lineage , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Epidermis/embryology , Epidermis/metabolism , Female , Gene Expression Profiling , Gestational Age , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Single-Cell Analysis , Transcription Factors/deficiency , Transcription Factors/genetics
16.
Cell Rep ; 32(4): 107952, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32726617

ABSTRACT

A certain number of epithelial cells in intestinal crypts are DNA damage resistant and contribute to regeneration. However, the cellular mechanism underlying intestinal regeneration remains unclear. Using lineage tracing, we show that cells marked by an Msi1 reporter (Msi1+) are right above Lgr5high cells in intestinal crypts and exhibit DNA damage resistance. Single-cell RNA sequencing reveals that the Msi1+ cells are heterogeneous with the majority being intestinal stem cells (ISCs). The DNA damage-resistant subpopulation of Msi1+ cells is characterized by low-to-negative Lgr5 expression and is more rapidly cycling than Lgr5high radiosensitive crypt base columnar stem cells (CBCs). This enables an efficient repopulation of the intestinal epithelium at early stage when Lgr5high cells are not emerging. Furthermore, relative to CBCs, Msi1+ cells preferentially produce Paneth cells during homeostasis and upon radiation repair. Together, we demonstrate that the DNA damage-resistant Msi1+ cells are cycling ISCs that maintain and regenerate the intestinal epithelium.


Subject(s)
Intestinal Mucosa/metabolism , Intestines/physiology , Stem Cells/metabolism , Animals , Cell Lineage/genetics , Female , Homeostasis , Intestinal Mucosa/radiation effects , Intestines/radiation effects , Male , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Paneth Cells/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Radiation Tolerance , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Regeneration/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
17.
Cell Res ; 30(10): 854-872, 2020 10.
Article in English | MEDLINE | ID: mdl-32457396

ABSTRACT

Mammary and extramammary Paget's Diseases (PD) are a malignant skin cancer characterized by the appearance of Paget cells. Although easily diagnosed, its pathogenesis remains unknown. Here, single-cell RNA-sequencing identified distinct cellular states, novel biomarkers, and signaling pathways - including mTOR, associated with extramammary PD. Interestingly, we identified MSI1 ectopic overexpression in basal epithelial cells of human PD skin, and show that Msi1 overexpression in the epidermal basal layer of mice phenocopies human PD at histopathological, single-cell and molecular levels. Using this mouse model, we identified novel biomarkers of Paget-like cells that translated to human Paget cells. Furthermore, single-cell trajectory, RNA velocity and lineage-tracing analyses revealed a putative keratinocyte-to-Paget-like cell conversion, supporting the in situ transformation theory of disease pathogenesis. Mechanistically, the Msi1-mTOR pathway drives keratinocyte-Paget-like cell conversion, and suppression of mTOR signaling with Rapamycin significantly rescued the Paget-like phenotype in Msi1-overexpressing transgenic mice. Topical Rapamycin treatment improved extramammary PD-associated symptoms in humans, suggesting mTOR inhibition as a novel therapeutic treatment in PD.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/drug therapy , Nerve Tissue Proteins/metabolism , Paget Disease, Extramammary/drug therapy , RNA-Binding Proteins/metabolism , Sirolimus/administration & dosage , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adult , Aged , Animals , Biomarkers/metabolism , Female , Humans , Male , Mice , Middle Aged
18.
Proc Natl Acad Sci U S A ; 117(11): 5761-5771, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32132203

ABSTRACT

The circadian clock coordinates a variety of immune responses with signals from the external environment to promote survival. We investigated the potential reciprocal relationship between the circadian clock and skin inflammation. We treated mice topically with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) to activate IFN-sensitive gene (ISG) pathways and induce psoriasiform inflammation. IMQ transiently altered core clock gene expression, an effect mirrored in human patient psoriatic lesions. In mouse skin 1 d after IMQ treatment, ISGs, including the key ISG transcription factor IFN regulatory factor 7 (Irf7), were more highly induced after treatment during the day than the night. Nuclear localization of phosphorylated-IRF7 was most prominently time-of-day dependent in epidermal leukocytes, suggesting that these cell types play an important role in the diurnal ISG response to IMQ. Mice lacking Bmal1 systemically had exacerbated and arrhythmic ISG/Irf7 expression after IMQ. Furthermore, daytime-restricted feeding, which affects the phase of the skin circadian clock, reverses the diurnal rhythm of IMQ-induced ISG expression in the skin. These results suggest a role for the circadian clock, driven by BMAL1, as a negative regulator of the ISG response, and highlight the finding that feeding time can modulate the skin immune response. Since the IFN response is essential for the antiviral and antitumor effects of TLR activation, these findings are consistent with the time-of-day-dependent variability in the ability to fight microbial pathogens and tumor initiation and offer support for the use of chronotherapy for their treatment.


Subject(s)
Circadian Rhythm , Immunity, Innate/genetics , Interferons/genetics , Membrane Glycoproteins/genetics , Skin/metabolism , Toll-Like Receptor 7/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Imiquimod/pharmacology , Interferon Inducers/pharmacology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferons/metabolism , Male , Membrane Glycoproteins/agonists , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Skin/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism
19.
Dev Cell ; 52(6): 764-778.e4, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32109382

ABSTRACT

The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.


Subject(s)
Cell Movement , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Forelimb/embryology , Syndactyly/genetics , Toes/embryology , Transcription Factors/genetics , Animals , Epithelial Cells/physiology , Forelimb/abnormalities , Forelimb/metabolism , Mice , Mice, Inbred C57BL , Morphogenesis , Toes/abnormalities
20.
Cell Stem Cell ; 26(1): 1, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31951585

ABSTRACT

This article shows an example of the peer review process for Circadian Entrainment Triggers Maturation of Human in vitro Islets (Alvarez-Dominguez et al., 2020).


Subject(s)
Circadian Rhythm , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...