Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 26(5): 902-914, 2023 05.
Article in English | MEDLINE | ID: mdl-37095394

ABSTRACT

Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.


Subject(s)
Spinal Cord , Transcriptome , Humans , Motor Neurons/metabolism , Neuroglia , Gray Matter
2.
Nature ; 610(7931): 319-326, 2022 10.
Article in English | MEDLINE | ID: mdl-36224417

ABSTRACT

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Subject(s)
Neural Pathways , Organoids , Animals , Animals, Newborn , Autistic Disorder , Humans , Long QT Syndrome , Motivation , Neurons/physiology , Optogenetics , Organoids/cytology , Organoids/innervation , Organoids/transplantation , Rats , Reward , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Stem Cells/cytology , Syndactyly
3.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34390642

ABSTRACT

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Subject(s)
Cerebral Cortex/embryology , Chromatin/metabolism , Gene Expression Regulation, Developmental , Single-Cell Analysis , Astrocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Cluster Analysis , Deep Learning , Epigenesis, Genetic , Fuzzy Logic , Glutamates/metabolism , Humans , Mutation/genetics , Neurons/metabolism , Regulatory Sequences, Nucleic Acid/genetics
4.
Nat Neurosci ; 24(3): 331-342, 2021 03.
Article in English | MEDLINE | ID: mdl-33619405

ABSTRACT

Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development. We demonstrate the presence of several known developmental milestones, including switches in the histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and physiological levels. These results suggest that important components of an intrinsic in vivo developmental program persist in vitro. We further map neurodevelopmental and neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a resource and webtool (Gene Expression in Cortical Organoids, GECO) to guide disease modeling.


Subject(s)
Cell Differentiation/physiology , DNA Methylation/physiology , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Gene Regulatory Networks , Humans , In Vitro Techniques , Neurodegenerative Diseases/genetics
5.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33333020

ABSTRACT

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Subject(s)
Cerebral Cortex/physiology , Motor Cortex/physiology , Organoids/physiology , Animals , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Cervical Vertebrae , Gene Expression Regulation , Glutamates/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Muscles/physiology , Myoblasts/metabolism , Nerve Net/physiology , Optogenetics , Organoids/ultrastructure , Rhombencephalon/physiology , Spheroids, Cellular/cytology , Spinal Cord/cytology
6.
Science ; 367(6476)2020 01 24.
Article in English | MEDLINE | ID: mdl-31974223

ABSTRACT

Forebrain development is characterized by highly synchronized cellular processes, which, if perturbed, can cause disease. To chart the regulatory activity underlying these events, we generated a map of accessible chromatin in human three-dimensional forebrain organoids. To capture corticogenesis, we sampled glial and neuronal lineages from dorsal or ventral forebrain organoids over 20 months in vitro. Active chromatin regions identified in human primary brain tissue were observed in organoids at different developmental stages. We used this resource to map genetic risk for disease and to explore evolutionary conservation. Moreover, we integrated chromatin accessibility with transcriptomics to identify putative enhancer-gene linkages and transcription factors that regulate human corticogenesis. Overall, this platform brings insights into gene-regulatory dynamics at previously inaccessible stages of human forebrain development, including signatures of neuropsychiatric disorders.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Chromatin/metabolism , Neurogenesis , Prosencephalon/embryology , Animals , Cell Lineage , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Developmental , Humans , Mental Disorders/embryology , Mental Disorders/genetics , Mice , Nervous System Diseases/embryology , Nervous System Diseases/genetics , Organoids/embryology , Pluripotent Stem Cells/physiology , Transcriptome
8.
Nat Protoc ; 13(9): 2062-2085, 2018 09.
Article in English | MEDLINE | ID: mdl-30202107

ABSTRACT

The ability to generate region-specific three-dimensional (3D) models to study human brain development offers great promise for understanding the nervous system in both healthy individuals and patients. In this protocol, we describe how to generate and assemble subdomain-specific forebrain spheroids, also known as brain region-specific organoids, from human pluripotent stem cells (hPSCs). We describe how to pattern the neural spheroids toward either a dorsal forebrain or a ventral forebrain fate, establishing human cortical spheroids (hCSs) and human subpallial spheroids (hSSs), respectively. We also describe how to combine the neural spheroids in vitro to assemble forebrain assembloids that recapitulate the interactions of glutamatergic and GABAergic neurons seen in vivo. Astrocytes are also present in the human forebrain-specific spheroids, and these undergo maturation when the forebrain spheroids are cultured long term. The initial generation of neural spheroids from hPSCs occurs in <1 week, with regional patterning occurring over the subsequent 5 weeks. After the maturation stage, brain region-specific spheroids are amenable to a variety of assays, including live-cell imaging, calcium dynamics, electrophysiology, cell purification, single-cell transcriptomics, and immunohistochemistry studies. Once generated, forebrain spheroids can also be matured for >24 months in culture.


Subject(s)
Organ Culture Techniques/methods , Organoids/growth & development , Pluripotent Stem Cells/physiology , Prosencephalon/cytology , Prosencephalon/growth & development , Tissue Engineering/methods , Humans , Models, Biological , Organogenesis
9.
Nature ; 545(7652): 54-59, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28445465

ABSTRACT

The development of the nervous system involves a coordinated succession of events including the migration of GABAergic (γ-aminobutyric-acid-releasing) neurons from ventral to dorsal forebrain and their integration into cortical circuits. However, these interregional interactions have not yet been modelled with human cells. Here we generate three-dimensional spheroids from human pluripotent stem cells that resemble either the dorsal or ventral forebrain and contain cortical glutamatergic or GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled in vitro to recapitulate the saltatory migration of interneurons observed in the fetal forebrain. Using this system, we find that in Timothy syndrome-a neurodevelopmental disorder that is caused by mutations in the CaV1.2 calcium channel-interneurons display abnormal migratory saltations. We also show that after migration, interneurons functionally integrate with glutamatergic neurons to form a microphysiological system. We anticipate that this approach will be useful for studying neural development and disease, and for deriving spheroids that resemble other brain regions to assemble circuits in vitro.


Subject(s)
Neurons/cytology , Prosencephalon/cytology , Prosencephalon/growth & development , Spheroids, Cellular/cytology , Autistic Disorder/genetics , Autistic Disorder/pathology , Cell Line , Cell Movement , Cells, Cultured , Female , GABAergic Neurons/cytology , Glutamic Acid/metabolism , Humans , Interneurons/cytology , Interneurons/pathology , Long QT Syndrome/genetics , Long QT Syndrome/pathology , Male , Models, Biological , Neurogenesis , Neurons/pathology , Pluripotent Stem Cells/cytology , Prosencephalon/anatomy & histology , Synapses/physiology , Syndactyly/genetics , Syndactyly/pathology
10.
Science ; 353(6296): 292-5, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27418510

ABSTRACT

Quiescence is essential for long-term maintenance of adult stem cells. Niche signals regulate the transit of stem cells from dormant to activated states. Here, we show that the E3-ubiquitin ligase Huwe1 (HECT, UBA, and WWE domain-containing 1) is required for proliferating stem cells of the adult mouse hippocampus to return to quiescence. Huwe1 destabilizes proactivation protein Ascl1 (achaete-scute family bHLH transcription factor 1) in proliferating hippocampal stem cells, which prevents accumulation of cyclin Ds and promotes the return to a resting state. When stem cells fail to return to quiescence, the proliferative stem cell pool becomes depleted. Thus, long-term maintenance of hippocampal neurogenesis depends on the return of stem cells to a transient quiescent state through the rapid degradation of a key proactivation factor.


Subject(s)
Adult Stem Cells/physiology , Hippocampus/embryology , Neural Stem Cells/physiology , Neurogenesis , Ubiquitin-Protein Ligases/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Hippocampus/cytology , Mice , Mice, Knockout , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Protein Stability , Proteolysis , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics
11.
Cereb Cortex ; 25(10): 3758-78, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25331604

ABSTRACT

Transcription factors of the nuclear factor one (NFI) family play a pivotal role in the development of the nervous system. One member, NFIX, regulates the development of the neocortex, hippocampus, and cerebellum. Postnatal Nfix(-/-) mice also display abnormalities within the subventricular zone (SVZ) lining the lateral ventricles, a region of the brain comprising a neurogenic niche that provides ongoing neurogenesis throughout life. Specifically, Nfix(-/-) mice exhibit more PAX6-expressing progenitor cells within the SVZ. However, the mechanism underlying the development of this phenotype remains undefined. Here, we reveal that NFIX contributes to multiple facets of SVZ development. Postnatal Nfix(-/-) mice exhibit increased levels of proliferation within the SVZ, both in vivo and in vitro as assessed by a neurosphere assay. Furthermore, we show that the migration of SVZ-derived neuroblasts to the olfactory bulb is impaired, and that the olfactory bulbs of postnatal Nfix(-/-) mice are smaller. We also demonstrate that gliogenesis within the rostral migratory stream is delayed in the absence of Nfix, and reveal that Gdnf (glial-derived neurotrophic factor), a known attractant for SVZ-derived neuroblasts, is a target for transcriptional activation by NFIX. Collectively, these findings suggest that NFIX regulates both proliferation and migration during the development of the SVZ neurogenic niche.


Subject(s)
Cell Movement , Cell Proliferation , Lateral Ventricles/embryology , NFI Transcription Factors/physiology , Neural Stem Cells/physiology , Neurogenesis , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Interneurons/physiology , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Neuroglia/physiology , Olfactory Bulb/embryology , Olfactory Bulb/metabolism , Stem Cell Niche
12.
Neuron ; 83(5): 1085-97, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25189209

ABSTRACT

The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells.


Subject(s)
Adult Stem Cells/cytology , Gene Expression Regulation, Developmental/genetics , Hippocampus/cytology , Neurogenesis/genetics , Adult Stem Cells/metabolism , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cerebral Ventricles/cytology , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Gene Expression Regulation, Developmental/drug effects , Glial Fibrillary Acidic Protein/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/deficiency , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Kainic Acid/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , T-Box Domain Proteins/metabolism , p300-CBP Transcription Factors/metabolism
13.
Genes Dev ; 27(16): 1769-86, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23964093

ABSTRACT

The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.


Subject(s)
Epigenesis, Genetic , NFI Transcription Factors/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , Bone Morphogenetic Protein 4/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Enhancer Elements, Genetic , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , HEK293 Cells , Humans , Mice , NFI Transcription Factors/genetics , Neural Stem Cells/drug effects , Protein Binding
14.
Alcohol Clin Exp Res ; 34(12): 2053-60, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20946306

ABSTRACT

BACKGROUND: The costs associated with alcohol abuse are staggering, therefore much effort has been put into developing new pharmacologic strategies to decrease alcohol abuse. Recently, the nicotinic acetylcholine receptor (nAChR) partial agonist varenicline has been shown to decrease ethanol consumption in both humans and animal models. METHODS: We examined the effects of varenicline on the ataxic and sedative-hypnotic effects of ethanol. First, varenicline was administered prior to placement in a locomotor activity chamber to determine whether varenicline influenced baseline locomotor activity. To determine the effect of nicotinic modulation on ethanol-induced motor incoordination, varenicline was administered 30 minutes prior to an acute ethanol injection and then mice were tested on the balance beam, dowel test, or fixed-speed rotarod. To examine ethanol's sedative-hypnotic effects, varenicline was administered 30 minutes prior to 4 g/kg ethanol and the duration of loss of righting reflex (LORR) was measured. RESULTS: Varenicline markedly reduced baseline locomotor activity in C57BL/6J mice. Varenicline increased ethanol-induced ataxia when measured on the balance beam and dowel test but had no effect when measured on the fixed-speed rotarod. Pretreatment with varenicline increased the duration of LORR. CONCLUSIONS: These data provide evidence that nAChRs may be involved in the ataxic and sedative effects of ethanol. It is possible that one mechanism that could contribute to the ability of varenicline to decrease ethanol consumption may be through increasing negative behavioral effects of alcohol.


Subject(s)
Ataxia/chemically induced , Benzazepines/pharmacology , Drug Partial Agonism , Ethanol/pharmacology , Hypnotics and Sedatives/pharmacology , Nicotinic Agonists/pharmacology , Quinoxalines/pharmacology , Animals , Benzazepines/agonists , Drug Evaluation, Preclinical , Drug Synergism , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Quinoxalines/agonists , Reflex, Righting/drug effects , Varenicline
15.
Psychopharmacology (Berl) ; 208(4): 613-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20072781

ABSTRACT

RATIONALE: Alcohol and nicotine are commonly co-abused. Genetic correlations between responses to these drugs have been reported, providing evidence that common genes underlie the response to alcohol and nicotine. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system are important in mediating nicotine response, and several studies suggest that alcohol may also interact with these nAChRs. OBJECTIVE: The aim of this study was to examine the role of nAChRs containing α7 or ß2 subunits in ethanol consumption. METHODS: A two-bottle choice paradigm was used to determine ethanol consumption in wild-type and nAChR subunit knockout mice. Challenge studies were performed using the α4ß2 nAChR partial agonist varenicline. RESULTS: Mice lacking the ß2 subunit consumed a similar amount of ethanol compared to their wild-type siblings in an ethanol-drinking paradigm. In contrast, mice lacking the α7 nAChR receptor subunit consumed significantly less ethanol than wild-type mice but consumed comparable amounts of water, saccharin, and quinine. In C57BL/6J mice, varenicline dose-dependently decreased ethanol consumption with a significant effect of 2 mg/kg, without affecting water or saccharin consumption. This effect of varenicline was not reversed in mice lacking either the α7 or ß2 subunit, providing evidence that nAChRs containing one of these subunits are not required for this effect of varenicline. CONCLUSIONS: This study provides evidence that α7 nAChRs are involved in ethanol consumption and supports the idea that pharmacological manipulation of nAChRs reduces ethanol intake. Additional nAChRs may also be involved in ethanol intake, and there may be functional redundancy in the nicotinic control of alcohol drinking.


Subject(s)
Alcohol Drinking/drug therapy , Alcohol Drinking/genetics , Benzazepines/pharmacology , Benzazepines/therapeutic use , Nicotinic Agonists/therapeutic use , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Alcohol Drinking/blood , Animals , Choice Behavior/drug effects , Choice Behavior/physiology , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Drinking Behavior/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nicotinic Agonists/pharmacology , Varenicline , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...