Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(11): R526-R527, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834022

ABSTRACT

Fish and other metazoans play a major role in long-term sequestration of carbon in the oceans through the biological carbon pump1. Recent studies estimate that fish can release about 1,200 to 1,500 million metric tons of carbon per year (MtC year-1) in the oceans through feces production, respiration, and deadfalls, with mesopelagic fish playing a major role1,2. This carbon remains sequestered (stored) in the ocean for a period that largely depends on the depth at which it is released. Cephalopods (squid, octopus, and cuttlefish) have the potential to sequester carbon more effectively than fish because they grow on average five times faster than fish3,4 and they die after reproducing at an early age4,5 (usually 1-2 years), after which their carcasses sink rapidly to the sea floor6. Deadfall of carcasses is particularly important for long-term sequestration because it rapidly transports carbon to depths where residence times are longest1,6. We estimate that cephalopod carcasses transfer 11-22 MtC to the seafloor globally. While cephalopods represent less than 5% of global fisheries catch7, fishing extirpates about 0.36 MtC year-1 of cephalopod carbon that could otherwise have sunk to the seafloor, about half as much as that of fishing large fish8.


Subject(s)
Carbon Sequestration , Cephalopoda , Fisheries , Animals , Cephalopoda/metabolism , Carbon/metabolism
2.
J Plankton Res ; 45(4): 576-596, 2023.
Article in English | MEDLINE | ID: mdl-37483910

ABSTRACT

Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.

3.
Proc Natl Acad Sci U S A ; 119(41): e2122042119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191216

ABSTRACT

The microfossil record demonstrates the presence of eukaryotic organisms in the marine ecosystem by about 1,700 million years ago (Ma). Despite this, steranes, a biomarker indicator of eukaryotic organisms, do not appear in the rock record until about 780 Ma in what is known as the "rise of algae." Before this, it is argued that eukaryotes were minor ecosystem members, with prokaryotes dominating both primary production and ecosystem dynamics. In this view, the rise of algae was possibly sparked by increased nutrient availability supplying the higher nutrient requirements of eukaryotic algae. Here, we challenge this view. We use a size-based ecosystem model to show that the size distribution of preserved eukaryotic microfossils from 1,700 Ma and onward required an active eukaryote ecosystem complete with phototrophy, osmotrophy, phagotrophy, and mixotrophy. Model results suggest that eukaryotes accounted for one-half or more of the living biomass, with eukaryotic algae contributing to about one-half of total marine primary production. These ecosystems lived with deep-water phosphate levels of at least 10% of modern levels. The general lack of steranes in the pre-780-Ma rock record could be a result of poor preservation.


Subject(s)
Ecosystem , Eukaryota , Biomarkers , Fossils , Phosphates , Water
4.
Am Nat ; 199(4): 564-575, 2022 04.
Article in English | MEDLINE | ID: mdl-35324377

ABSTRACT

AbstractIndividual metabolism generally scales with body mass with an exponent around 3/4. From dimensional arguments it follows that maximum population growth rate (rmax) scales with a -1/4 exponent. However, the dimensional argument implicitly assumes that offspring size is proportional to adult size. Here, we calculate rmax from metabolic scaling at the level of individuals within size-structured populations while explicitly accounting for offspring size. We identify four general patterns of how rmax scales with adult mass based on four empirical life history patterns employed by groups of species. These life history patterns are determined by how traits of somatic growth rate and/or offspring mass relate to adult mass. One life history pattern-constant adult-to-offspring mass ratio and somatic growth rate independent of adult mass-leads to the classic -1/4 scaling of rmax. The other three life history patterns either lead to nonmetabolic population growth scaling with adult mass or do not follow a power-law relationship at all. Using life history data on five marine taxa and terrestrial mammals, we identify species groups that belong to one of each case. We predict that elasmobranchs, copepods, and mammals follow standard -1/4 power-law scaling, whereas teleost fish and bivalves do not have a pure power-law scaling. Our work highlights how taxa may deviate from the classic -1/4 metabolic scaling pattern of maximum population growth. The approach is generic and can be applied to any taxa.


Subject(s)
Life History Traits , Animals , Fishes , Mammals
5.
Nat Commun ; 12(1): 4085, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215729

ABSTRACT

Nitrogen ([Formula: see text]) fixation by heterotrophic bacteria associated with sinking particles contributes to marine N cycling, but a mechanistic understanding of its regulation and significance are not available. Here we develop a mathematical model for unicellular heterotrophic bacteria growing on sinking marine particles. These bacteria can fix [Formula: see text] under suitable environmental conditions. We find that the interactive effects of polysaccharide and polypeptide concentrations, sinking speed of particles, and surrounding [Formula: see text] and [Formula: see text] concentrations determine the [Formula: see text] fixation rate inside particles. [Formula: see text] fixation inside sinking particles is mainly fueled by [Formula: see text] respiration rather than [Formula: see text] respiration. Our model suggests that anaerobic processes, including heterotrophic [Formula: see text] fixation, can take place in anoxic microenvironments inside sinking particles even in fully oxygenated marine waters. The modelled [Formula: see text] fixation rates are similar to bulk rates measured in the aphotic ocean, and our study consequently suggests that particle-associated heterotrophic [Formula: see text] fixation contributes significantly to oceanic [Formula: see text] fixation.


Subject(s)
Bacteria/metabolism , Heterotrophic Processes/physiology , Nitrogen Fixation/physiology , Seawater/microbiology , Ecology , Models, Theoretical , Nitrogen , Oceans and Seas , Peptides , Polysaccharides , Seawater/chemistry , Temperature
6.
J Theor Biol ; 523: 110663, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33862092

ABSTRACT

Individuals of different interacting populations often adjust to prevailing conditions by changing their behavior simultaneously, with consequences for trophic relationships throughout the system. While we now have a good theoretical understanding of how individuals adjust their behavior, the population dynamical consequences of co-adaptive behaviors are rarely described. Further, mechanistic descriptions of ecosystem functions are based on population models that seldom take behavior into account. Here, we present a model that combines the population dynamics and adaptive behavior of organisms of two populations simultaneously. We explore how the Nash equilibrium of a system - i.e. the optimal behavior of its constituent organisms - can shape population dynamics, and conversely how population dynamics impact the Nash equilibrium of the system. We illustrate this for the case of diel vertical migration (DVM), the daily movement of marine organisms between food-depleted but safe dark depths and more risky nutrition-rich surface waters. DVM represents the archetypal example of populations choosing between a foraging arena (the upper sunlit ocean) and a refuge (the dark depths). We show that population sizes at equilibrium are significantly different if organisms can adapt their behavior, and that optimal DVM behaviors within the community vary significantly if population dynamics are considered. As a consequence, ecosystem function estimates such as trophic transfer efficiency and vertical carbon export differ greatly when fitness seeking behavior is included. Ignoring the role of behavior in multi-trophic population modeling can potentially lead to inaccurate predictions of population biomasses and ecosystem functions.


Subject(s)
Aquatic Organisms , Ecosystem , Adaptation, Psychological , Animals , Biomass , Food Chain , Humans , Population Dynamics , Predatory Behavior
7.
J Theor Biol ; 517: 110631, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33600827

ABSTRACT

Size-spectrum models are a recent class of models describing the dynamics of a whole community based on a description of individual organisms. The models are motivated by marine ecosystems where they cover the size range from multicellular plankton to the largest fish. We propose to extend the size-spectrum model with spatial components. The spatial dynamics is governed by a random motion and a directed movement in the direction of increased fitness, which we call 'fitness-taxis'. We use the model to explore whether spatial irregularities of marine communities can occur due to the internal dynamics of predator-prey interactions and spatial movements. This corresponds to a pattern-formation analysis generalized to an entire ecosystem but is not limited to one prey and one predator population. The analyses take the form of Fourier analysis and numerical experiments. Results show that diffusion always stabilizes the equilibrium but fitness-taxis destabilizes it, leading to non-stationary spatially inhomogeneous population densities, which are travelling in size. However, there is a strong asymmetry between fitness-induced destabilizing effects and diffusion-induced stabilizing effects with the latter dominating over the former. These findings reveal that fitness taxis acts as a possible mechanism behind pattern formations in ecosystems with high diversity of organism sizes, which can drive the emergence of spatial heterogeneity even in a spatially homogeneous environment.


Subject(s)
Ecosystem , Models, Biological , Animals , Diffusion , Food Chain , Plankton , Population Dynamics , Predatory Behavior
8.
R Soc Open Sci ; 7(2): 192011, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32257352

ABSTRACT

The recruitment and biomass of a fish stock are influenced by their environmental conditions and anthropogenic pressures such as fishing. The variability in the environment often translates into fluctuations in recruitment, which then propagate throughout the stock biomass. In order to manage fish stocks sustainably, it is necessary to understand their dynamics. Here, we systematically explore the dynamics and sensitivity of fish stock recruitment and biomass to environmental noise. Using an age-structured and trait-based model, we explore random noise (white noise) and autocorrelated noise (red noise) in combination with low to high levels of harvesting. We determine the vital rates of stocks covering a wide range of possible body mass (size) growth rates and asymptotic size parameter combinations. Our study indicates that the variability of stock recruitment and biomass are probably correlated with the stock's asymptotic size and growth rate. We find that fast-growing and large-sized fish stocks are likely to be less vulnerable to disturbances than slow-growing and small-sized fish stocks. We show how the natural variability in fish stocks is amplified by fishing, not just for one stock but for a broad range of fish life histories.

9.
Am Nat ; 195(4): E100-E111, 2020 04.
Article in English | MEDLINE | ID: mdl-32216662

ABSTRACT

Trophic strategy determines stoichiometry of plankton. In general, heterotrophic zooplankton have lower and more stable C∶N and C∶P ratios than photoautotrophic phytoplankton, whereas mixotrophic protists, which consume prey and photosynthesize, have stoichiometry between zooplankton and phytoplankton. As trophic strategies change with cell size, body size may be a key trait influencing eukaryotic plankton stoichiometry. However, the relationship between body size and stoichiometry remains unclear. Here we measured plankton size-fractionated C∶N ratios under different intensities of light and nutrient supply in subtropical freshwater and marine systems. We found a unimodal body size-C∶N ratio pattern, with a maximum C∶N ratio at ∼50 µm diameter in marine and freshwater systems. Moreover, the variation in C∶N ratios is explained mainly by body size, followed by light intensity and nutrient concentration. To investigate the mechanisms behind this unimodal pattern, we constructed a size-based plankton food web model in which the trophic strategy and C∶N ratio are an emerging result. Our model simulations reproduce the unimodal pattern with a C∶N ratio of photoautotrophs ≤50 µm increasing with body size due to increase of photosynthetic carbon, whereas C∶N ratios of organisms >50 µm decrease with size due to decreasing photoautotrophic but increasing heterotrophic uptake. Based on our field observations and simulation, we extend the classic "light-nutrient" theory that determines plankton C∶N ratio to include body size and trophic strategy dependency. We conclude that body size and size-dependent uptake of resources (light, nutrients, and prey) determine plankton stoichiometry at various light and nutrient supplies.


Subject(s)
Body Size , Food Chain , Plankton/metabolism , Sunlight , Animals , Aquatic Organisms/physiology , Autotrophic Processes/physiology , Carbon Cycle , Heterotrophic Processes/physiology , Nitrogen Cycle , Nutrients , Photosynthesis , Phytoplankton , Plankton/growth & development , Plankton/radiation effects , Zooplankton
10.
J Anim Ecol ; 89(6): 1497-1510, 2020 06.
Article in English | MEDLINE | ID: mdl-32162299

ABSTRACT

The concept of biodiversity-ecosystem functioning (BEF) has been studied over the last three decades using experiments, theoretical models and more recently observational data. While theoretical models revealed that species richness is the best metric summarizing ecosystem functioning, it is clear that ecosystem function is explained by other variables besides species richness. Additionally, theoretical models rarely focus on more than one ecosystem function, limiting ecosystem functioning to biomass or production. There is a lack of theoretical background to verify how other components of biodiversity and species interactions support ecosystem functioning. Here, using simulations from a food web model based on a community assembly process and a trait-based approach, we test how species biodiversity, food web structure and predator-prey interactions determine several ecosystem functions (biomass, metabolism, production and productivity). Our results demonstrate that the relationship between species richness and ecosystem functioning depends on the type of ecosystem function considered and the importance of diversity and food web structure differs across functions. Particularly, we show that dominance plays a major role in determining the level of biomass, and it is at least as important as the number of species. We find that dominance occurs in the food web when species do not experience strong predation. By manipulating the structure of the food web, we show that species using a wider trait space (generalist communities) result in more connected food webs and generally reach the same level of functioning with less species. The model shows the importance of generalist versus specialist communities on BEF relationships, and as such, empirical studies should focus on quantifying the importance of diet/habitat use on ecosystem functioning. Our study provides a better understanding of BEF underlying mechanisms and generates research hypotheses that can be considered and tested in observational studies. We recommend that studies investigating links between biodiversity and ecosystem functions should include metrics of dominance, species composition, trophic structure and possibly environmental trait space. We also advise that more effort should be made into calculating several ecosystem functions and properties with data from natural multitrophic systems.


Subject(s)
Ecosystem , Food Chain , Animals , Biodiversity , Biomass , Predatory Behavior
11.
Conserv Physiol ; 7(1): coz025, 2019.
Article in English | MEDLINE | ID: mdl-31380108

ABSTRACT

Increasing temperatures under climate change are thought to affect individual physiology of fish and other ectotherms through increases in metabolic demands, leading to changes in species performance with concomitant effects on species ecology. Although intuitively appealing, the driving mechanism behind thermal performance is contested; thermal performance (e.g. growth) appears correlated with metabolic scope (i.e. oxygen availability for activity) for a number of species, but a substantial number of datasets do not support oxygen limitation of long-term performance. Whether or not oxygen limitations via the metabolic scope, or a lack thereof, have major ecological consequences remains a highly contested question. size and trait-based model of energy and oxygen budgets to determine the relative influence of metabolic rates, oxygen limitation and environmental conditions on ectotherm performance. We show that oxygen limitation is not necessary to explain performance variation with temperature. Oxygen can drastically limit performance and fitness, especially at temperature extremes, but changes in thermal performance are primarily driven by the interplay between changing metabolic rates and species ecology. Furthermore, our model reveals that fitness trends with temperature can oppose trends in growth, suggesting a potential explanation for the paradox that species often occur at lower temperatures than their growth optimum. Our model provides a mechanistic underpinning that can provide general and realistic predictions about temperature impacts on the performance of fish and other ectotherms and function as a null model for contrasting temperature impacts on species with different metabolic and ecological traits.

12.
Ecol Lett ; 22(3): 558-560, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30677200

ABSTRACT

The two parameters of the Michaelis-Menten model, the maximum uptake rate and the half-saturation constant, are not stochastically independent, and the half-saturation constant is not a measure of nutrient affinity, as commonly assumed. Failure to realise their interdependence and mechanistic interpretation may lead to the emergence of false trade-offs.


Subject(s)
Dinoflagellida , Toxins, Biological , Kinetics , Nutrients , Toxins, Biological/metabolism
13.
ISME J ; 13(1): 64-75, 2019 01.
Article in English | MEDLINE | ID: mdl-30108304

ABSTRACT

Many species of phytoplankton produce toxins that may provide protection from grazing. In that case one would expect toxin production to be costly; else all species would evolve toxicity. However, experiments have consistently failed to show any costs. Here, we show that costs of toxin production are environment dependent but can be high. We develop a fitness optimization model to estimate rate, costs, and benefits of toxin production, using PST (paralytic shellfish toxin) producing dinoflagellates as an example. Costs include energy and material (nitrogen) costs estimated from well-established biochemistry of PSTs, and benefits are estimated from relationship between toxin content and grazing mortality. The model reproduces all known features of PST production: inducibility in the presence of grazer cues, low toxicity of nitrogen-starved cells, but high toxicity of P-limited and light-limited cells. The model predicts negligible reduction in cell division rate in nitrogen replete cells, consistent with observations, but >20% reduction when nitrogen is limiting and abundance of grazers high. Such situation is characteristic of coastal and oceanic waters during summer when blooms of toxic algae typically develop. The investment in defense is warranted, since the net growth rate is always higher in defended than in undefended cells.


Subject(s)
Dinoflagellida/metabolism , Marine Toxins/metabolism , Phytoplankton/metabolism , Animals , Energy Metabolism/physiology , Models, Biological , Nitrogen/metabolism , Phytoplankton/classification
14.
Front Microbiol ; 10: 3155, 2019.
Article in English | MEDLINE | ID: mdl-32038586

ABSTRACT

Biomass distribution among size classes follows a power law where the Log-abundance of taxa scales to Log-size with a slope that responds to environmental abiotic and biotic conditions. The interactions between ecological mechanisms controlling the slope of locally realized size-abundance relationships (SAR) are however not well understood. Here we tested how warming, nutrient levels, and grazing affect the slope of phytoplankton community SARs in decadal time-series from eight Swiss lakes of the peri-alpine region, which underwent environmental forcing due to climate change and oligotrophication. We expected rising temperature to have a negative effect on slope (favoring small phytoplankton), and increasing nutrient levels and grazing pressure to have a positive effect (benefiting large phytoplankton). Using a random forest approach to extract robust patterns from the noisy data, we found that the effects of temperature (direct and indirect through water column stability), nutrient availability (phosphorus and total biomass), and large herbivore (copepods and daphnids) grazing and selectivity on slope were non-linear and interactive. Increasing water temperature or total grazing pressure, and decreasing phosphorus levels, had a positive effect on slope (favoring large phytoplankton, which are predominantly mixotrophic in the lake dataset). Our results therefore showed patterns that were opposite to the expected long-term effects of temperature and nutrient levels, and support a paradigm in which (i) small phototrophic phytoplankton appear to be favored under high nutrients levels, low temperature and low grazing, and (ii) large mixotrophic algae are favored under oligotrophic conditions when temperature and grazing pressure are high. The effects of temperature were stronger under nutrient limitation, and the effects of nutrients and grazing were stronger at high temperature. Our study shows that the phytoplankton local SARs in lakes respond to both the independent and the interactive effects of resources, grazing and water temperature in a complex, unexpected way, and observations from long-term studies can deviate significantly from general theoretical expectations.

15.
Nat Ecol Evol ; 2(1): 65-70, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29180711

ABSTRACT

Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal generalists that outcompete the pelagic specialists. Our findings demonstrate the vulnerability of large teleost predators to ecosystem-wide changes in energy flows and hence provide key insight to predict the responses of these important marine resources under global change.


Subject(s)
Animal Distribution , Fishes/physiology , Food Chain , Predatory Behavior , Animals , Models, Biological , Oceans and Seas
16.
Proc Biol Sci ; 284(1867)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29167361

ABSTRACT

Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes. We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our simulations illustrate how isolated communities deteriorate as populations go extinct when the environment moves outside the species' thermal niches. High-trophic-level species are most vulnerable, while the ecosystem function of lower trophic levels is less impacted. Open communities can compensate for the loss of ecosystem function by invasions of new species. Individual populations show complex responses largely uncorrelated with the direct impact of temperature change on physiology. Such complex responses are particularly evident during extinction and invasion events of other species, where climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted.


Subject(s)
Climate Change , Food Chain , Models, Biological , Population Dynamics , Temperature
17.
Am Nat ; 189(4): E77-E90, 2017 04.
Article in English | MEDLINE | ID: mdl-28350501

ABSTRACT

Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10-8 to 1 µg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking. To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental conditions, including seasonal succession. We identify two mixotrophic strategies: generalist mixotrophs investing in all three investment traits and obligate mixotrophs investing only in phototrophy and phagotrophy. We formulate two conjectures: (1) most cells are limited by organic carbon; however, small unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates general insights into the strategies of a broad class of organisms in the size range from micrometers to millimeters that dominate the primary and secondary production of the world's oceans.


Subject(s)
Food , Plankton , Environment , Oceans and Seas
18.
Proc Natl Acad Sci U S A ; 114(4): 634-635, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28082724

Subject(s)
Ecology , Engineering
19.
ISME J ; 11(1): 212-223, 2017 01.
Article in English | MEDLINE | ID: mdl-27482925

ABSTRACT

Unicellular eukaryotes make up the base of the ocean food web and exist as a continuum in trophic strategy from pure heterotrophy (phagotrophic zooplankton) to pure photoautotrophy ('phytoplankton'), with a dominance of mixotrophic organisms combining both strategies. Here we formulate a trait-based model for mixotrophy with three key resource-harvesting traits: photosynthesis, phagotrophy and inorganic nutrient uptake, which predicts the trophic strategy of species throughout the seasonal cycle. Assuming that simple carbohydrates from photosynthesis fuel respiration, and feeding primarily provides building blocks for growth, the model reproduces the observed light-dependent ingestion rates and species-specific growth rates with and without prey from the laboratory. The combination of traits yielding the highest growth rate suggests high investments in photosynthesis, and inorganic nutrient uptake in the spring and increased phagotrophy during the summer, reflecting general seasonal succession patterns of temperate waters. Our trait-based model presents a simple and general approach for the inclusion of mixotrophy, succession and evolution in ecosystem models.


Subject(s)
Phytoplankton/metabolism , Zooplankton/metabolism , Animals , Biological Evolution , Ecosystem , Eukaryota/growth & development , Eukaryota/metabolism , Food Chain , Heterotrophic Processes , Models, Biological , Photosynthesis , Phytoplankton/growth & development , Seasons , Zooplankton/growth & development
20.
Phys Chem Chem Phys ; 18(11): 8243, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26905035

ABSTRACT

Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

SELECTION OF CITATIONS
SEARCH DETAIL
...