Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Soft Matter ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690673

ABSTRACT

Fat crystallization is one of the predominant factors influencing the structure and properties of fat-containing emulsions. In the present study, the role of emulsifiers on fat crystallization dynamics within droplet multiphase systems was evaluated via single-droplet analysis, taking advantage of the non-destructive properties of confocal Raman microscopy. Palm oil droplets dispersed in water were used as a model system, due to palm oil's well-known crystallization properties. Emulsion droplets of the same size were generated using two different emulsifiers (Whey Protein Isolate and Tween 60), at various concentrations. Fast and slow cooling treatments were applied to affect fat crystallisation and network formation as well as droplet morphology, and crystallization dynamics. Raman imaging analysis demonstrated that the chemical structure and concentration of the emulsifier significantly influenced both crystal nucleation within the droplets, as well as the spatial distribution and morphology of the fat crystal network. Additionally, analysis of the spectra of the crystallized phase provided essential information regarding the impact of the emulsifiers on the microstructure, degree of structural order, and structural arrangements of the fat crystal networks. Furthermore, by performing single droplet analysis during cooling it was possible to observe shape distortions in Tween 60 stabilized droplets, as a consequence of the formation of a three-dimensional network of fat crystals that strongly interacted with the interface. On the other hand, the droplets retained their shape when whey proteins were absorbed at the interface. Confocal Raman microscopy, in combination with polarized light microscopy, is, therefore, a well-suited tool for in situ, single-droplet analysis of emulsified oil systems, providing essential information about emulsified fat crystallization dynamics, contributing to better understanding and designing products with enhanced structure and function.

2.
Soft Matter ; 19(23): 4208-4222, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37158404

ABSTRACT

Confocal Raman microscopy is a promising technique to study structural complexity of multi-phase foods and soft materials. This technique overcomes the limitations of traditional microscopic techniques, such as the inability to identify water regions or to map the composition of various phases in situ, without sample disruption or the addition of specific dyes. The objective of this work was to carry out a systematic study on a well-understood model food, pizza cheese, establishing a methodology for data acquisition and handling for confocal Raman microscopy studies of anisotropic protein structures. The study demonstrated that conventional confocal microscopy remains an important tool to study the structure of protein networks. However, confocal Raman microscopy brings added value in the observation of components distribution, for example, water distribution in the protein phase during storage, using line scans or area imaging, and to detect spatial heterogeneities. This research compared different means of processing spectroscopic data, and demonstrates the critical importance of data handling, advocating for detailed methodological descriptions to better compare research results.

3.
Foods ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466185

ABSTRACT

Confocal Raman microscopy is a promising technique to derive information about microstructure, with minimal sample disruption. Raman emission bands are highly specific to molecular structure and with Raman spectroscopy it is thus possible to observe different classes of molecules in situ, in complex food matrices, without employing fluorescent dyes. In this work confocal Raman microscopy was employed to observe microstructural changes occurring after freezing and thawing in high-moisture cheeses, and the observations were compared to those obtained with confocal laser scanning microscopy. Two commercially available cream cheese products were imaged with both microscopy techniques. The lower resolution (1 µm/pixel) of confocal Raman microscopy prevented the observation of particles smaller than 1 µm that may be part of the structure (e.g., sugars). With confocal Raman microscopy it was possible to identify and map the large water domains formed during freezing and thawing in high-moisture cream cheese. The results were supported also by low resolution NMR analysis. NMR and Raman microscopy are complementary techniques that can be employed to distinguish between the two different commercial formulations, and different destabilization levels.

4.
Food Chem ; 297: 124881, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31253314

ABSTRACT

Imaging the microstructure of opaque composite foodstuffs and extracting quantitative chemical information about specific localized components is challenging. Herein, a method has been developed to determine spatially resolved concentrations of aqueous salt and applied to measure salt concentrations of water droplets in butter samples. This was done using Coherent Anti-Stokes Raman Scattering (CARS) microscopy which achieves non-invasive label free imaging based on visualization of specific chemical-bond vibrations. The concentration of salt in the dispersed water droplets in butter was determined based on the relative change in intensity of the CARS-signal at two distinct wavenumbers, which have been shown to be dependent on the inter-molecular coupling of water molecules and salt. The results provide the size and salt concentration distribution of the droplets in the samples. It is further shown that the average salt concentration in the whole sample can correctly be inferred from the concentration measured within the water droplets.


Subject(s)
Butter/analysis , Sodium Chloride/analysis , Spectrum Analysis, Raman/methods , Food Analysis , Microscopy , Oils/chemistry , Water/chemistry
5.
J Agric Food Chem ; 64(44): 8359-8368, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27741399

ABSTRACT

Fucus vesiculosus extracts that have both radical scavenging activity and metal chelating ability in vitro were used as natural antioxidant in granola bars enriched with fish oil emulsion by using primary and secondary emulsion systems stabilized by sodium caseinate alone and sodium caseinate-chitosan. The bars were stored at 20 °C and evaluated over a period of 10 weeks by measuring the development of primary and secondary oxidation products. The samples prepared with secondary emulsion system developed less oxidation products probably due to increased interfacial layer thickness that would act as a barrier to the penetration and diffusion of molecular species that promote oxidation. The positive charge of oil droplets in the secondary emulsion may also inhibit iron-lipid interaction through electrostatic repulsion. Additional protection against lipid oxidation was obtained when fish oil emulsions were added to the granola bars especially in combination with acetone and ethanol extracts of Fucus vesiculosus.


Subject(s)
Antioxidants/chemistry , Fish Oils/chemistry , Functional Food , Seaweed/chemistry , Caseins/chemistry , Chitosan/chemistry , Emulsions/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Fucus , Functional Food/analysis , Gas Chromatography-Mass Spectrometry , Humans , Lipid Peroxides/analysis , Oxidation-Reduction , Plant Extracts/chemistry , Taste , Tocopherols/analysis , Volatile Organic Compounds/analysis
6.
Food Chem ; 192: 415-23, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304368

ABSTRACT

In this study, the impact of high intensity ultrasound (HIU) on proteins in whey protein isolates was examined. Effects on thermal behavior, secondary structure and nature of intra- and intermolecular bonds during heat-induced gelling were investigated. Ultrasonication (24 kHz, 300 W/cm(2), 2078 J/mL) significantly reduced denaturation enthalpies, whereas no change in secondary structure was detected by circular dichroism. The thiol-blocking agent N-ethylmaleimide was applied in order to inhibit formation of disulfide bonds during gel formation. Results showed that increased contents of α-lactalbumin (α-La) were associated with increased sensitivity to ultrasonication. The α-La:ß-lactoglobulin (ß-Lg) ratio greatly affected the nature of the interactions formed during gelation, where higher amounts of α-La lead to a gel more dependent on disulfide bonds. These results contribute to clarifying the mechanisms mediating the effects of HIU on whey proteins on the molecular level, thus moving further toward implementing HIU in the processing chain in the food industry.


Subject(s)
Protein Denaturation , Whey Proteins/chemistry , Circular Dichroism , Gels , Hot Temperature , Ultrasonics
7.
Int J Food Microbiol ; 213: 59-70, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26216837

ABSTRACT

Reduction of sodium chloride (NaCl) in cheese manufacturing is a challenge for the dairy industry. NaCl has a profound role on microbial development influencing cheese sensory and technological properties. The purpose of this work was to investigate how proliferation, distribution and autolysis of two commercial DL-starter cultures (C1 and C2) used in the production of Danish semi-hard Samsoe cheeses were affected by reduced NaCl levels. Cheeses containing <0.3% (unsalted), 2.3% (reduced-salt) and 3.4% (normal-salted) (w/v) NaCl in moisture were produced and analyzed during 12 weeks of ripening. Lactic acid bacteria (LAB), distribution of bacteria as single cells or microcolonies, their viability in the cheeses and cell autolysis were monitored during ripening, as well as the impact of NaCl content and autolysis on the formation of free amino acids (FAA). Reduction of NaCl resulted in higher LAB counts at the early stages of ripening, with differences between the two DL-starter cultures. The unsalted cheeses produced with C1 had retained a significantly higher number of the initial LAB counts (cfu/g) after 1 and 2 weeks of ripening (i.e. 58% and 71%), compared to the normal-salted cheeses (i.e. 22% and 21%), whereas no significant difference was found between the reduced-salt (i.e. 31% and 35%) and normal-salted cheeses. At the later stages of ripening (i.e. 7 and 11 weeks) NaCl had no significant influence. For cheeses produced with C2, a significant influence of NaCl was only found in cheeses ripened for 7 weeks, where the unsalted and reduced-salt cheeses had retained a significantly higher number of the initial LAB counts (cfu/g) (i.e. 39% and 38%), compared to the normal-salted cheeses (i.e. 21%). In the Samsoe cheeses, bacteria were organized as single cells, in groups of 2-3 cells or in groups of ≥4 cells. During ripening the decrease in the number of viable bacteria was mainly due to a reduction in the number of viable bacteria organized in groups of ≥4 cells. A negative correlation between NaCl content and PepX activity was observed. At the end of ripening the total FAA content was lower in the unsalted cheeses, compared to the reduced- and normal-salted cheeses. In conclusion, NaCl had a significant influence on proliferation of both DL-starter cultures. However, the influence of NaCl on culture development was more pronounced in cheeses produced with DL-starter culture C1. As both texture and taste are parameters known to be affected by the development of the starter culture, the design of starter cultures for reduced NaCl cheeses is recommended.


Subject(s)
Bacterial Load/drug effects , Bacteriolysis/drug effects , Cheese/microbiology , Lactococcus/growth & development , Sodium Chloride/pharmacology , Amino Acids/analysis , Food Microbiology , Lactococcus/metabolism
8.
J Food Sci ; 80(6): E1218-28, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25959794

ABSTRACT

The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune.


Subject(s)
Fermentation , Food Handling/methods , Microscopy, Confocal/methods , Temperature , Yogurt/analysis , Animals , Dairy Products/analysis , Female , Humans , Milk/chemistry
9.
J Dairy Sci ; 97(4): 1929-38, 2014.
Article in English | MEDLINE | ID: mdl-24485691

ABSTRACT

Milk fat exists as globules in its natural state in milk. The potential of using globular fat to modulate the rheological properties and crystallization behavior in butter-like emulsions was studied in the present work. We conducted a comparative study of butter-like emulsions, with a fat phase consisting of 0, 10, 25, 50, or 100% anhydrous milk fat (AMF), the remaining fat being butter grains, and all samples containing 20% water, to obtain systematic variation in the ratio of globular fat. All emulsions were studied over 4wk of storage at 5°C. By combining small and large deformation rheology, we conducted a detailed characterization of the rheological behavior of butter-like emulsions. We applied differential scanning calorimetry to monitor thermal behavior, confocal laser scanning microscopy for microstructural analysis, and low-field pulsed nuclear magnetic resonance spectrometry to measure solid fat content. By combining these techniques, we determined that increasing the fraction of globular fat (by mixing with butter grains) decreases the hardness of butter-like emulsions up to an order of magnitude at d 1. However, no difference was observed in thermal behavior as a function of butter grain content, as all emulsions containing butter grains revealed 2 endothermal peaks corresponding to the high (32.7°C ± 0.6) and medium (14.6°C ± 0.1) melting fractions of fatty acids. In terms of microstructure, decreasing the amount of butter grains in the emulsions resulted in formation of a denser fat crystal network, corresponding to increased hardness. Moreover, microstructural analysis revealed that the presence of butter grains resulted in faster formation of a continuous fat crystal network compared with the 100% AMF sample, which was dominated by crystal clusters surrounded by liquid oil. During storage, hardness remained stable and no changes in thermal behavior were observed, despite an increase in solid fat content of up to 5%. After 28d of storage, we observed no difference in either microstructural or rheological properties, indicating that formation of primary bonds occurs primarily within the first day of storage. The rheological behavior of butter-like emulsions is not determined solely by hardness, but also by stiffness related to secondary bonds within the fat crystal network. The complex rheological behavior of milk fat-based emulsions is better characterized using multiple parameters.


Subject(s)
Butter/analysis , Glycolipids/chemistry , Glycoproteins/chemistry , Calorimetry, Differential Scanning , Crystallization , Emulsions/chemistry , Lipid Droplets , Rheology
10.
Food Microbiol ; 36(1): 90-102, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23764224

ABSTRACT

Growth of Listeria innocua at 9 °C was investigated in white cheeses manufactured from ultra-filtrate milk concentrate added varying amounts of skimmed milk powder, NaCl and glucono-delta-lactone. Characterization of the white cheese structures was performed using nuclear magnetic resonance (NMR) T2 relaxation parameters (relaxation times constants, relative areas and width of peaks) and their applicability as predictive factors for maximum specific growth rate, √µ(max) and log-increase in 6 weeks of L. innocua was evaluated by polynomial modeling. Inclusion of NMR parameters was able to increase the goodness-of-fit of two basic models; one having pH, undissociated gluconic acid (GA(u), mM) and NaCl (% w/v) as predictive factors and another having pH, GA(u) and a(w) as predictive factors. However, the best model fit was observed using √µ(max) as response for the model including pH, GA(u), aw and Width T21 revealing the lowest relative root mean squared errors of 14.0%. As the T2 relaxation population T21 is assigned to represent immobilized bulk water protons and the width T21 the heterogeneity of this water population, growth of L. innocua in white cheese seemed to be dependent on the heterogeneity of the immobilized bulk water present in cheese.


Subject(s)
Cheese/analysis , Cheese/microbiology , Listeria/growth & development , Colony Count, Microbial , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Biological , Water/analysis
11.
J Agric Food Chem ; 60(7): 1635-44, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22276613

ABSTRACT

Water mobility and distribution in cream cheeses with variations in fat (4, 15, and 26%), added salt (0, 0.625, and 1.25%), and pH (4.2, 4.7, and 5.2) were studied using (1)H NMR relaxometry. The cheese samples were inoculated with a mixture of Listeria innocua, Escherichia coli O157 and Staphylococcus aureus, and partial least-squares regression revealed that (1)H T(2) relaxation decay data were able to explain a large part of the variation in the survival of E. coli O157 (64-83%). However, the predictions of L. innocua and S. aureus survival were strongly dependent on the fat/water content of the samples. Consequently, the present results indicate that NMR relaxometry is a promising technique for predicting the survival of these bacteria; however, the characteristics of the sample matrix are substantial.


Subject(s)
Cheese/analysis , Cheese/microbiology , Fats/analysis , Food Microbiology , Sodium Chloride/analysis , Water/analysis , Colony Count, Microbial , Escherichia coli O157/growth & development , Hydrogen-Ion Concentration , Listeria/growth & development , Magnetic Resonance Spectroscopy , Staphylococcus aureus/growth & development
12.
J Agric Food Chem ; 59(18): 10097-103, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21854070

ABSTRACT

The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1H T2 relaxation rates almost identically. Consequently, the present study indicates that the proteins present in the samples do not affect the 1H relaxation behavior markedly, even at relatively high SMP concentrations (15-25%). Comparison of rheological measurements and NMR measurements suggested that the collapse of κ-casein during acidification could contribute to the initial decrease in 17O and 1H relaxation rate in the pH range between 6.6 and 5.5 for 15% SMP and in the pH range between 6.6 and 5.9 for 25% SMP. However, below pH 5.5 the viscosity and 17O and 1H NMR relaxation rates did not correlate, revealing that the aggregation of casein micelles, which increases viscosity below pH 5.5, does not involve major repartitioning of water.


Subject(s)
Food, Preserved , Magnetic Resonance Spectroscopy , Milk/chemistry , Rheology , Water/chemistry , Animals , Caseins/chemistry , Gluconates , Hydrogen , Hydrogen-Ion Concentration , Lactones , Oxygen Isotopes , Solutions , Viscosity
13.
J Agric Food Chem ; 58(1): 513-9, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20050704

ABSTRACT

The objective of this study was to monitor rennet-induced milk gel formation and mechanically induced gel syneresis in situ by low-field NMR. pH, temperature, and gel firmness at cutting time were varied in a factorial design. The new curve-fitting method Doubleslicing revealed that during coagulation two proton populations with distinct transverse relaxation times (T2,1=181, T2,2=465 ms) were present in fractions (f1=98.9%, f2=1.1%). Mechanical cutting of the gel in the NMR tube induced macrosyneresis, which led to the appearance of an additional proton population (T2,3=1500-2200 ms) identified as whey. On the basis of NMR quantification of whey water the syneresis rate was calculated and found to be significantly dependent on pH and temperature.


Subject(s)
Chymosin/chemistry , Gels/chemistry , Magnetic Resonance Spectroscopy/methods , Milk/chemistry , Animals , Cattle , Hydrogen-Ion Concentration , Kinetics , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...