Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 247: 357-362, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28954248

ABSTRACT

Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is known that certain strains of lactic acid bacteria are capable of causing stuck fermentations, while other strains appear to be harmless. However, it was not previously known whether or how these strains interact one with another. In this study, more than 500 harmless strains of lactic acid bacteria were tested in a model system in combination with strains that cause stuck fermentations. Among these harmless strains, a group of beneficial strains was identified that restored ethanol production to near normal levels. Such beneficial strains may serve as an alternative approach to the use of antibiotics in fuel ethanol production.


Subject(s)
Anti-Bacterial Agents , Ethanol , Bacteria , Fermentation
2.
Biotechnol Lett ; 40(1): 157-163, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29038924

ABSTRACT

OBJECTIVE: To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans. RESULTS: Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans. CONCLUSIONS: A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller's dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.


Subject(s)
Anti-Bacterial Agents/metabolism , Ascomycota/metabolism , Glucans/metabolism , Virginiamycin/metabolism , Ascomycota/growth & development , Biotransformation , Chromatography, High Pressure Liquid , Culture Media , Hot Temperature
3.
Appl Environ Microbiol ; 82(17): 5068-76, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27260363

ABSTRACT

UNLABELLED: A total of 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity using agar plates containing ethyl ferulate as the sole carbon source, and Lactobacillus fermentum NRRL B-1932 demonstrated the strongest FE activity among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate. FE activities were monitored using high-performance liquid chromatography with an acetonitrile-trifluoroacetic acid gradient. To produce sufficient purified FE from L. fermentum strain NRRL B-1932 (LfFE), the cDNA encoding LfFE (Lffae) was amplified and cloned by using available closely related genome sequences and overexpressed in Escherichia coli A 29.6-kDa LfFE protein was detected from the protein extract of E. coli BL21(pLysS) carrying pET28bLffae upon IPTG (isopropyl-ß-d-thiogalactopyranoside) induction. The recombinant LfFE containing a polyhistidine tag was purified by nickel-nitrilotriacetic acid affinity resin. The purified LfFE showed strong activities against several artificial substrates, including p-nitrophenyl acetate and 4-methylumbelliferyl p-trimethylammoniocinnamate chloride. The optimum pH and temperature of the recombinant LfFE were around 6.5 and 37°C, respectively, as determined using either crude or purified recombinant LfFE. This study will be essential for the production of the LfFE in E. coli on a larger scale that could not be readily achieved by L. fermentum fermentation. IMPORTANCE: The production of feruloyl esterase (FE) from Lactobacillus fermentum NRRL B-1932 reported in this study will have immense potential commercial applications not only in biofuel production but also in pharmaceutical, polymer, oleo chemical, cosmetic additive, and detergent industries, as well as human health-related applications, including food flavoring, functional foods, probiotic agents, preventive medicine, and animal feed. Given the essential role FE plays in the production of hydroxycinnamic acids and ferulic acid, plus the generally regarded as safe status of lactobacilli, which therefore have less regulatory concerns, LfFE from the probiotic L. fermentum reported in this work can be directly used for increased production of high-value hydroxycinnamates and ferulic acid from natural or synthetic carbon sources.


Subject(s)
Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Escherichia coli/genetics , Limosilactobacillus fermentum/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/isolation & purification , Escherichia coli/metabolism , Fermentation , Gene Expression , Kinetics , Limosilactobacillus fermentum/genetics , Molecular Sequence Data , Sequence Alignment
4.
Biotechnol Lett ; 38(5): 863-70, 2016 May.
Article in English | MEDLINE | ID: mdl-26875091

ABSTRACT

OBJECTIVE: The objective was to phylogenetically classify diverse strains of Aureobasidium pullulans and determine their production of feruloyl esterase. RESULTS: Seventeen strains from the A. pullulans literature were phylogenetically classified. Phenotypic traits of color variation and endo-ß-1,4-xylanase overproduction were associated with phylogenetic clade 10 and particularly clade 8. Literature strains used for pullulan production all belonged to clade 7. These strains and 36 previously classified strains were tested for feruloyl esterase production, which was found to be associated with phylogenetic clades 4, 11, and particularly clade 8. Clade 8 strains NRRL 58552 and NRRL 62041 produced the highest levels of feruloyl esterase among strains tested. CONCLUSIONS: Production of both xylanase and feruloyl esterase are associated with A. pullulans strains in phylogenetic clade 8, which is thus a promising source of enzymes with potential biotechnological applications.


Subject(s)
Ascomycota/classification , Ascomycota/enzymology , Carboxylic Ester Hydrolases/metabolism , Phylogeny , Ascomycota/genetics , Ascomycota/isolation & purification , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , RNA Polymerase II/genetics , Sequence Analysis, DNA , Tubulin/genetics , Xylosidases/metabolism
5.
Bioresour Technol ; 196: 347-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26255598

ABSTRACT

Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grind corn fuel ethanol facility. Among eight sites sampled in the facility, the combined liquefaction stream and yeast propagation tank were consistently contaminated, leading to contamination of early fermentation tanks. Among 768 contaminants isolated, 92% were identified as Lactobacillus sp., with the most abundant species being Lactobacillus plantarum, Lactobacillus casei, Lactobacillus mucosae, and Lactobacillus fermentum. Seven percent of total isolates showed the ability to form biofilms in pure cultures, and 22% showed the capacity to significantly inhibit ethanol production. However, these traits were not correlated. Ethanol inhibition appeared to be related to acetic acid production by contaminants, particularly by obligately heterofermentative species such as L. fermentum and L. mucosae.


Subject(s)
Biofuels/microbiology , Biotechnology/methods , Ethanol , Lactobacillus , Biofilms , Biotechnology/instrumentation , Fermentation , Lactobacillus/physiology , Longitudinal Studies , Yeasts , Zea mays/microbiology
6.
Bioresour Technol ; 169: 45-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25022836

ABSTRACT

Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A variety of potential biofilm inhibitors were tested, including microbial polysaccharides, commercial enzymes, ferric ammonium citrate, liamocins, phage endolysin, xylitol, and culture supernatants from Bacillus sp. A commercial enzyme mixture (Novozyme 188) and culture supernatants from Bacillus subtilis strains ALT3A and RPT-82412 were identified as the most promising biofilm inhibitors. In biofilm flow cells, these inhibitors reduced the density of viable biofilm cells by 0.8-0.9 log cfu/cm(2). Unlike B. subtilis strain RPT-82412, B. subtilis strain ALT3A and Novozyme 188 did not inhibit planktonic growth of Lactobacillus sp. MALDI-TOF mass spectra showed the production of surfactin-like molecules by both B. subtilis strains, and the coproduction of iturin-like molecules by strain RPT-82412.


Subject(s)
Biofilms/growth & development , Biofuels/microbiology , Fermentation , Lactobacillus/physiology , Bacillus/metabolism , Ethanol/metabolism , Lipopeptides/chemistry , Plankton/growth & development , Saccharomyces cerevisiae/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Biotechnol Lett ; 35(10): 1701-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23801121

ABSTRACT

Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains in clade 9, which exhibit a dark olivaceous pigment, produced the highest levels of lipase, with strain NRRL 62034 yielding 0.57 U lipase/ml. By comparison, Candida cylindracea strain NRRL Y-17506 produced 0.05 U lipase/ml under identical conditions. A. pullulans strain NRRL 62034 reached maximal lipase levels in 5 days on lipase induction medium, while A. pullulans strain NRRL Y-2311-1 and strains in clades 4 and 10 were highest after 6 days. A. pullulans strain NRRL Y-2311-1 and strains in clade 9 produced two extracellular proteins in common, at >50 and <37 kDa.


Subject(s)
Ascomycota/enzymology , Lipase/analysis , Candida/enzymology , Culture Media/chemistry , Electrophoresis, Polyacrylamide Gel , Lipase/chemistry , Molecular Weight , Time Factors
8.
Enzyme Microb Technol ; 53(1): 33-7, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23683702

ABSTRACT

Laccases are polyphenol oxidases (EC 1.10.3.2) that have numerous industrial and bioremediation applications. Laccases are well known as lignin-degrading enzymes, but these enzymes can play numerous other roles in fungi. In this study, 41 strains of the fungus Aureobasidium pullulans were examined for laccase production. Enzymes from A. pullulans were distinct from those from lignin-degrading fungi and associated with pigment production. Laccases from strains in phylogenetic clade 5, which produced a dark vinaceous pigment, exhibited a temperature optimum of 50-60°C and were stable for an hour at 50°C, unlike enzymes from the lignin-degrading fungi Trametes versicolor and Pycnoporus cinnabarinus. Laccase purified from A. pullulans strain NRRL 50381, a representative of clade 5, was glycosylated but had a molecular weight of 60-70kDa after Endo H treatment. Laccase purified from strain NRRL Y-2568, which produced a dark olivaceous pigment, was also glycosylated, but had a molecular weight of greater than 100kDa after Endo H treatment.


Subject(s)
Ascomycota/enzymology , Laccase/metabolism , Ascomycota/classification , Ascomycota/genetics , Enzyme Stability , Glycosylation , Industrial Microbiology , Laccase/chemistry , Laccase/isolation & purification , Phylogeny , Pigments, Biological/metabolism , Temperature
9.
Biotechnol Lett ; 35(2): 225-31, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23132490

ABSTRACT

Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both commercially prepared and crude extracts, for their ability to oxidize veratryl alcohol in the presence of various solvents and mediators. Screening revealed complete conversion of veratryl alcohol to veratraldehyde catalyzed by a crude preparation of the laccase from Trametes versicolor ATCC 11235 and the mediator TEMPO in 20 % (v/v) tert-butanol.


Subject(s)
Benzyl Alcohols/metabolism , Laccase/metabolism , Trametes/enzymology , Benzaldehydes/metabolism , Laccase/isolation & purification , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL