Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
medRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826461

ABSTRACT

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

2.
Am J Pathol ; 193(12): 2001-2016, 2023 12.
Article in English | MEDLINE | ID: mdl-37673326

ABSTRACT

Bronchopulmonary dysplasia (BPD), also called chronic lung disease of immaturity, afflicts approximately one third of all extremely premature infants, causing lifelong lung damage. There is no effective treatment other than supportive care. Retinopathy of prematurity (ROP), which impairs vision irreversibly, is common in BPD, suggesting a related pathogenesis. However, specific mechanisms of BPD and ROP are not known. Herein, a neonatal mouse hyperoxic model of coincident BPD and retinopathy was used to screen for candidate mediators, which revealed that granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3, was up-regulated significantly in mouse lung lavage fluid and plasma at postnatal day 14 in response to hyperoxia. Preterm infants with more severe BPD had increased plasma G-CSF. G-CSF-deficient neonatal pups showed significantly reduced alveolar simplification, normalized alveolar and airway resistance, and normalized weight gain compared with wild-type pups after hyperoxic lung injury. This was associated with a marked reduction in the intensity, and activation state, of neutrophilic and monocytic inflammation and its attendant oxidative stress response, and protection of lung endothelial cells. G-CSF deficiency also provided partial protection against ROP. The findings in this study implicate G-CSF as a pathogenic mediator of BPD and ROP, and suggest the therapeutic utility of targeting G-CSF biology to treat these conditions.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Retinopathy of Prematurity , Infant , Infant, Newborn , Animals , Humans , Mice , Bronchopulmonary Dysplasia/pathology , Infant, Premature , Endothelial Cells/pathology , Lung/pathology , Hyperoxia/complications , Retinopathy of Prematurity/pathology , Granulocyte Colony-Stimulating Factor , Animals, Newborn
3.
Am J Respir Cell Mol Biol ; 69(1): 99-112, 2023 07.
Article in English | MEDLINE | ID: mdl-37014138

ABSTRACT

The epidemiological patterns of incident chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma are changing, with an increasing fraction of disease occurring in patients who are never-smokers or were not exposed to traditional risk factors. However, causative mechanism(s) are obscure. Overactivity of Src family kinases (SFKs) and myeloid cell-dependent inflammatory lung epithelial and endothelial damage are independent candidate mechanisms, but their pathogenic convergence has not been demonstrated. Here we present a novel preclinical model in which an activating mutation in Lyn, a nonreceptor SFK that is expressed in immune cells, epithelium, and endothelium-all strongly implicated in the pathogenesis of COPD-causes spontaneous inflammation, early-onset progressive emphysema, and lung adenocarcinoma. Surprisingly, even though activated macrophages, elastolytic enzymes, and proinflammatory cytokines were prominent, bone marrow chimeras formally demonstrated that myeloid cells were not disease initiators. Rather, lung disease arose from aberrant epithelial cell proliferation and differentiation, microvascular lesions within an activated endothelial microcirculation, and amplified EGFR (epidermal growth factor receptor) expression. In human bioinformatics analyses, LYN expression was increased in patients with COPD and was correlated with increased EGFR expression, a known lung oncogenic pathway, and LYN was linked to COPD. Our study shows that a singular molecular defect causes a spontaneous COPD-like immunopathology and lung adenocarcinoma. Furthermore, we identify Lyn and, by implication, its associated signaling pathways as new therapeutic targets for COPD and cancer. Moreover, our work may inform the development of molecular risk screening and intervention methods for disease susceptibility, progression, and prevention of these increasingly prevalent conditions.


Subject(s)
Adenocarcinoma of Lung , Emphysema , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Adenocarcinoma of Lung/genetics , ErbB Receptors/metabolism , Lung Neoplasms/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/genetics , src-Family Kinases/metabolism
4.
J Allergy Clin Immunol Pract ; 11(7): 2104-2114.e3, 2023 07.
Article in English | MEDLINE | ID: mdl-37054881

ABSTRACT

BACKGROUND: As-needed low-dose inhaled corticosteroid (ICS)-formoterol reliever is recommended in patients with asthma prescribed maintenance ICS-formoterol. Clinicians often ask whether ICS-formoterol reliever can be used with other maintenance ICS-long-acting ß2-agonists. OBJECTIVE: To evaluate the safety and effectiveness of as-needed formoterol in patients taking maintenance ICS-formoterol or ICS-salmeterol from the RELIEF study. METHODS: RELIEF (SD-037-0699) was a 6-month, open-label study that randomized 18,124 patients with asthma to as-needed formoterol 4.5 µg or salbutamol 200 µg on top of maintenance therapy. This post hoc analysis included patients on maintenance ICS-formoterol or ICS-salmeterol (n = 5436). The primary safety outcome was a composite of serious adverse events (SAEs) and/or adverse events leading to discontinuation (DAEs); the primary effectiveness outcome was time-to-first exacerbation. RESULTS: For both maintenance groups and both relievers, similar numbers of patients had ≥1 SAE and/or DAE. In patients taking maintenance ICS-salmeterol, but not ICS-formoterol, significantly more non-asthma-related and nonserious DAEs occurred with as-needed formoterol versus as-needed salbutamol (P = .0066 and P = .0034, respectively). In patients taking maintenance ICS-formoterol, there was a significantly lower risk in time-to-first exacerbation with as-needed formoterol versus as-needed salbutamol (hazard ratio [HR]: 0.82, 95% confidence interval [CI]: 0.70, 0.95; P = .007). In patients taking ICS-salmeterol maintenance, time-to-first exacerbation was not significantly different between treatment arms (HR: 0.95, 95% CI: 0.84, 1.06; P = .35). CONCLUSIONS: As-needed formoterol significantly reduced exacerbation risk compared with as-needed salbutamol when added to maintenance ICS-formoterol, but not to maintenance ICS-salmeterol. More DAEs were seen with ICS-salmeterol maintenance therapy plus as-needed formoterol. Further research is needed to assess whether this is relevant to as-needed combination ICS-formoterol.


Subject(s)
Asthma , Bronchodilator Agents , Humans , Formoterol Fumarate/therapeutic use , Salmeterol Xinafoate/therapeutic use , Bronchodilator Agents/therapeutic use , Budesonide/therapeutic use , Ethanolamines/adverse effects , Drug Combinations , Asthma/drug therapy , Asthma/chemically induced , Albuterol/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Administration, Inhalation
5.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-36891079

ABSTRACT

Background: COPD patients are more susceptible to viral respiratory infections and their sequelae, and have intrinsically weaker immune responses to vaccinations against influenza and other pathogens. Prime-boost, double-dose immunisation has been suggested as a general strategy to overcome weak humoral response to vaccines, such as seasonal influenza vaccination, in susceptible populations with weak immunity. However, this strategy, which may also provide fundamental insights into the nature of weakened immunity, has not been formally studied in COPD. Methods: We conducted an open-label study of seasonal influenza vaccination in 33 vaccine-experienced COPD patients recruited from established cohorts (mean age 70 (95% CI 66.9-73.2) years; mean forced expiratory volume in 1 s/forced vital capacity ratio 53.4% (95% CI 48.0-58.8%)). Patients received two sequential standard doses of the 2018 quadrivalent influenza vaccine (15 µg haemagglutinin per strain) in a prime-boost schedule 28 days apart. We measured strain-specific antibody titres, an accepted surrogate of likely efficacy, and induction of strain-specific B-cell responses following the prime and boost immunisations. Results: Whereas priming immunisation induced the expected increase in strain-specific antibody titres, a second booster dose was strikingly ineffective at further increasing antibody titres. Similarly, priming immunisation induced strain-specific B-cells, but a second booster dose did not further enhance the B-cell response. Poor antibody responses were associated with male gender and cumulative cigarette exposure. Conclusions: Prime-boost, double-dose immunisation does not further improve influenza vaccine immunogenicity in previously vaccinated COPD patients. These findings underscore the need to design more effective vaccine strategies for COPD patients for influenza.

6.
J Allergy Clin Immunol ; 151(4): 966-975, 2023 04.
Article in English | MEDLINE | ID: mdl-36592703

ABSTRACT

BACKGROUND: Type 2 endotype asthma is driven by IL-4 and IL-13 signaling via IL-4Ra, which is highly expressed on airway epithelium, airway smooth muscle, and immunocytes in the respiratory mucosa, suggesting potential advantages of an inhalable antagonist. Lipocalin 1 (Lcn1), a 16 kDa protein abundant in human periciliary fluid, has a robust drug-like structure well suited to protein engineering, but it has never been used to make an inhaled Anticalin protein therapeutic. OBJECTIVES: We sought to reengineer Lcn1 into an inhalable IL-4Ra antagonist and assess its pharmacodynamic/kinetic profile. METHODS: Lcn1 was systematically modified by directed protein mutagenesis yielding a high-affinity, slowly dissociating, long-acting full antagonist of IL-4Ra designated PRS-060 with properties analogous to dupilumab, competitively antagonizing IL-4Ra-dependent cell proliferation, mucus induction, and eotaxin expression in vitro. Because PRS-060 displayed exquisite specificity for human IL-4Ra, with no cross-reactivity to rodents or higher primates, we created a new triple-humanized mouse model substituting human IL-4Ra, IL-4, and IL-13 at their correct syntenic murine loci to model clinical dosing. RESULTS: Inhaled PRS-060 strongly suppressed acute allergic inflammation indexes in triple-humanized mice with a duration of action longer than its bulk clearance, suggesting that it may act locally in the lung. CONCLUSION: Lcn1 can be reengineered into the Anticalin antagonist PRS-060 (elarekibep), exemplifying a new class of inhaled topical, long-acting therapeutic drugs with the potential to treat type 2 endotype asthma.


Subject(s)
Asthma , Interleukin-13 , Animals , Humans , Mice , Asthma/drug therapy , Disease Models, Animal , Interleukin-4/genetics , Lung , Proteins , Nebulizers and Vaporizers , Receptors, Interleukin-4/immunology
7.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L373-L384, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36719079

ABSTRACT

Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.


Subject(s)
Cigarette Smoking , Legionella pneumophila , Legionnaires' Disease , Mice , Animals , Macrophages, Alveolar/metabolism , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , Lung/microbiology
8.
Viruses ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36560624

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.


Subject(s)
Epithelial Cells , Heparin , SARS-CoV-2 , Virus Replication , Humans , COVID-19 , Epithelial Cells/virology , Heparin/pharmacology , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
9.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037355

ABSTRACT

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Subject(s)
DNA-Binding Proteins , Immunity, Innate , Interleukin-1beta , Interleukin-6 , Pulmonary Emphysema , Animals , Apoptosis , Caspase 1/metabolism , Cytokine Receptor gp130/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Pulmonary Emphysema/immunology
10.
NPJ Vaccines ; 7(1): 8, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075113

ABSTRACT

Though clinical guidelines recommend influenza vaccination for chronic obstructive pulmonary disease (COPD) patients and other high-risk populations, it is unclear whether current vaccination strategies induce optimal antibody responses. This study aimed to identify key variables associated with strain-specific antibody responses in COPD patients and healthy older people. 76 COPD and 72 healthy participants were recruited from two Australian centres and inoculated with influenza vaccine. Serum strain-specific antibody titres were measured pre- and post-inoculation. Seroconversion rate was the primary endpoint. Antibody responses varied between vaccine strains. The highest rates of seroconversion were seen with novel strains (36-55%), with lesser responses to strains included in the vaccine in more than one consecutive year (27-33%). Vaccine responses were similar in COPD patients and healthy participants. Vaccine strain, hypertension and latitude were independent predictors of seroconversion. Our findings reassure that influenza vaccination is equally immunogenic in COPD patients and healthy older people; however, there is room for improvement. There may be a need to personalise the yearly influenza vaccine, including consideration of pre-existing antibody titres, in order to target gaps in individual antibody repertoires and improve protection.

11.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: mdl-33632799

ABSTRACT

BACKGROUND: Studies of asthma and chronic obstructive pulmonary disease (COPD) typically focus on these diagnoses separately, limiting understanding of disease mechanisms and treatment options. NOVELTY is a global, 3-year, prospective observational study of patients with asthma and/or COPD from real-world clinical practice. We investigated heterogeneity and overlap by diagnosis and severity in this cohort. METHODS: Patients with physician-assigned asthma, COPD or both (asthma+COPD) were enrolled, and stratified by diagnosis and severity. Baseline characteristics were reported descriptively by physician-assigned diagnosis and/or severity. Factors associated with physician-assessed severity were evaluated using ordinal logistic regression analysis. RESULTS: Of 11 243 patients, 5940 (52.8%) had physician-assigned asthma, 1396 (12.4%) had asthma+COPD and 3907 (34.8%) had COPD; almost half were from primary care. Symptoms, health-related quality of life and spirometry showed substantial heterogeneity and overlap between asthma, asthma+COPD and COPD, with 23%, 62% and 64% of patients, respectively, having a ratio of post-bronchodilator forced expiratory volume in 1 s to forced vital capacity below the lower limit of normal. Symptoms and exacerbations increased with greater physician-assessed severity and were higher in asthma+COPD. However, 24.3% with mild asthma and 20.4% with mild COPD had experienced ≥1 exacerbation in the past 12 months. Medication records suggested both under-treatment and over-treatment relative to severity. Blood eosinophil counts varied little across diagnosis and severity groups, but blood neutrophil counts increased with severity across all diagnoses. CONCLUSION: This analysis demonstrates marked heterogeneity within, and overlap between, physician-assigned diagnosis and severity groups in patients with asthma and/or COPD. Current diagnostic and severity classifications in clinical practice poorly differentiate between clinical phenotypes that may have specific risks and treatment implications.


Subject(s)
Asthma , Physicians , Pulmonary Disease, Chronic Obstructive , Asthma/complications , Asthma/diagnosis , Asthma/epidemiology , Forced Expiratory Volume , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Quality of Life , Spirometry , Vital Capacity
12.
Eur Respir Rev ; 30(159)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33408088

ABSTRACT

COPD and idiopathic pulmonary fibrosis (IPF) together represent a considerable unmet medical need, and advances in their treatment lag well behind those of other chronic conditions. Both diseases involve maladaptive repair mechanisms leading to progressive and irreversible damage. However, our understanding of the complex underlying disease mechanisms is incomplete; with current diagnostic approaches, COPD and IPF are often discovered at an advanced stage and existing definitions of COPD and IPF can be misleading. To halt or reverse disease progression and achieve lung regeneration, there is a need for earlier identification and treatment of these diseases. A precision medicine approach to treatment is also important, involving the recognition of disease subtypes, or endotypes, according to underlying disease mechanisms, rather than the current "one-size-fits-all" approach. This review is based on discussions at a meeting involving 38 leading global experts in chronic lung disease mechanisms, and describes advances in the understanding of the pathology and molecular mechanisms of COPD and IPF to identify potential targets for reversing disease degeneration and promoting tissue repair and lung regeneration. We also discuss limitations of existing disease measures, technical advances in understanding disease pathology, and novel methods for targeted drug delivery.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/therapy , Lung , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Regeneration
13.
J Immunol ; 205(1): 213-222, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32461237

ABSTRACT

It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.


Subject(s)
Arthritis, Experimental/immunology , Chemokine CCL17/metabolism , Pain/immunology , Peritonitis/immunology , Pneumonia/immunology , Animals , Arthritis, Experimental/complications , Arthritis, Experimental/pathology , Calcitonin Gene-Related Peptide/metabolism , Chemokine CCL17/genetics , Genes, Reporter/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Mice , Mice, Transgenic , Nerve Growth Factor/metabolism , Pain/diagnosis , Pain/pathology , Pain Measurement , Peritonitis/complications , Peritonitis/pathology , Pneumonia/complications , Pneumonia/pathology , Signal Transduction/immunology , Substance P/metabolism
14.
Antioxid Redox Signal ; 32(13): 943-956, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31190552

ABSTRACT

Aims: Excessive reactive oxygen species (ROS) are detrimental to immune cellular functions that control pathogenic microbes; however, the mechanisms are poorly understood. Our aim was to determine the immunological consequences of increased ROS levels during acute bacterial infection. Results: We used a model of Streptococcus pneumoniae (Spn) lung infection and superoxide dismutase 3-deficient (SOD3-/-) mice, as SOD3 is a major antioxidant enzyme that catalyses the dismutation of superoxide radicals. First, we observed that in vitro, macrophages from SOD3-/- mice generated excessive phagosomal ROS during acute bacterial infection. In vivo, there was a significant reduction in infiltrating neutrophils in the bronchoalveolar lavage fluid and reduced peribronchial and alveoli inflammation in SOD3-/- mice 2 days after Spn infection. Annexin V/propidium iodide staining revealed enhanced apoptosis in neutrophils from Spn-infected SOD3-/- mice. In addition, SOD3-/- mice showed an altered macrophage phenotypic profile, with markedly diminished recruitment of monocytes (CD11clo, CD11bhi) in the airways. Further investigation revealed significantly lower levels of the monocyte chemokine CCL-2, and cytokines IL-23, IL-1ß, and IL-17A in Spn-infected SOD3-/- mice. There were also significantly fewer IL-17A-expressing gamma-delta T cells (γδ T cells) in the lungs of Spn-infected SOD3-/- mice. Innovation: Our data demonstrate that SOD3 deficiency leads to an accumulation of phagosomal ROS levels that initiate early neutrophil apoptosis during pneumococcal infection. Consequent to these events, there was a failure to initiate innate γδ T cell responses. Conclusion: These studies offer new cellular and mechanistic insights into how excessive ROS can regulate innate immune responses to bacterial infection.


Subject(s)
Interleukin-17/immunology , Pneumococcal Infections/immunology , Reactive Oxygen Species/immunology , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Immunity, Innate/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumococcal Infections/pathology , Superoxide Dismutase/deficiency , Superoxide Dismutase/immunology
16.
J Clin Invest ; 128(6): 2406-2418, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29708507

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Gene Deletion , Granulocyte Colony-Stimulating Factor/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Mice , Mice, Knockout , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/deficiency , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology
18.
Eur Respir J ; 50(5)2017 11.
Article in English | MEDLINE | ID: mdl-29191958
19.
Eur Respir J ; 50(3)2017 09.
Article in English | MEDLINE | ID: mdl-28978617
20.
Eur Respir J ; 50(4)2017 10.
Article in English | MEDLINE | ID: mdl-29074551
SELECTION OF CITATIONS
SEARCH DETAIL
...