Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487099

ABSTRACT

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Subject(s)
Hemeproteins , Biophysics , Cryoelectron Microscopy , Electrons , Oxidation-Reduction
2.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036998

ABSTRACT

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Subject(s)
Cytochromes , Metalloproteins , Cytochromes/metabolism , Oxidation-Reduction , Electron Transport , Metalloproteins/metabolism , Heme/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36983061

ABSTRACT

Escherichia coli NfsB has been studied extensively for its potential for cancer gene therapy by reducing the prodrug CB1954 to a cytotoxic derivative. We have previously made several mutants with enhanced activity for the prodrug and characterised their activity in vitro and in vivo. Here, we determine the X-ray structure of our most active triple and double mutants to date, T41Q/N71S/F124T and T41L/N71S. The two mutant proteins have lower redox potentials than wild-type NfsB, and the mutations have lowered activity with NADH so that, in contrast to the wild-type enzyme, the reduction of the enzyme by NADH, rather than the reaction with CB1954, has a slower maximum rate. The structure of the triple mutant shows the interaction between Q41 and T124, explaining the synergy between these two mutations. Based on these structures, we selected mutants with even higher activity. The most active one contains T41Q/N71S/F124T/M127V, in which the additional M127V mutation enlarges a small channel to the active site. Molecular dynamics simulations show that the mutations or reduction of the FMN cofactors of the protein has little effect on its dynamics and that the largest backbone fluctuations occur at residues that flank the active site, contributing towards its broad substrate range.


Subject(s)
Escherichia coli Proteins , Neoplasms , Prodrugs , Humans , Escherichia coli/metabolism , Prodrugs/chemistry , NAD , Neoplasms/drug therapy , Oxidoreductases , Nitroreductases/metabolism , Escherichia coli Proteins/genetics
4.
FEBS J ; 290(12): 3243-3257, 2023 06.
Article in English | MEDLINE | ID: mdl-36708234

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are one of the fastest growing classes of recreational drugs. Despite their growth in use, their vast chemical diversity and rapidly changing landscape of structures make understanding their effects challenging. In particular, the side effects for SCRA use are extremely diverse, but notably include severe outcomes such as cardiac arrest. These side effects appear at odds with the main putative mode of action, as full agonists of cannabinoid receptors. We have hypothesized that SCRAs may act as MAO inhibitors, owing to their structural similarity to known monoamine oxidase inhibitors (MAOI's) as well as matching clinical outcomes (hypertensive crisis) of 'monoaminergic toxicity' for users of MAOIs and some SCRA use. We have studied the potential for SCRA-mediated inhibition of MAO-A and MAO-B via a range of SCRAs used commonly in the UK, as well as structural analogues to prove the atomistic determinants of inhibition. By combining in silico and experimental kinetic studies we demonstrate that SCRAs are MAO-A-specific inhibitors and their affinity can vary significantly between SCRAs, most notably affected by the nature of the SCRA 'head' group. Our data allow us to posit a putative mechanism of inhibition. Crucially our data demonstrate that SCRA activity is not limited to just cannabinoid receptor agonism and that alternative interactions might account for some of the diversity of the observed side effects and that these effects can be SCRA-specific.


Subject(s)
Cannabinoid Receptor Agonists , Illicit Drugs , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Kinetics , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase
5.
Methods Mol Biol ; 2397: 137-155, 2022.
Article in English | MEDLINE | ID: mdl-34813063

ABSTRACT

Tetrapyrrole cofactors such as heme and chlorophyll imprint their intrinsic reactivity and properties on a multitude of natural proteins and enzymes, and there is much interest in exploiting their functional and catalytic capabilities within minimal, de novo designed protein scaffolds. Here we describe how, using only natural biosynthetic and post-translational modification pathways, de novo designed soluble and hydrophobic proteins can be equipped with tetrapyrrole cofactors within living Escherichia coli cells. We provide strategies to achieve covalent and non-covalent heme incorporation within the de novo proteins and describe how the heme biosynthetic pathway can be co-opted to produce the light sensitive zinc protoporphyrin IX for loading into proteins in vivo. In addition, we describe the imaging of hydrophobic proteins and cofactor-rich protein droplets by electron and fluorescence microscopy, and how cofactors can be stripped from the de novo proteins to aid in vitro identification.


Subject(s)
Proteins/metabolism , Chlorophyll , Escherichia coli/genetics , Heme , Proteins/genetics , Tetrapyrroles
6.
J Chem Phys ; 155(11): 114901, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34551522

ABSTRACT

While proteins have been treated as particles with a spherically symmetric interaction, of course in reality, the situation is rather more complex. A simple step toward higher complexity is to treat the proteins as non-spherical particles and that is the approach we pursue here. We investigate the phase behavior of the enhanced green fluorescent protein (eGFP) under the addition of a non-adsorbing polymer, polyethylene glycol. From small angle x-ray scattering, we infer that the eGFP undergoes dimerization and we treat the dimers as spherocylinders with aspect ratio L/D - 1 = 1.05. Despite the complex nature of the proteins, we find that the phase behavior is similar to that of hard spherocylinders with an ideal polymer depletant, exhibiting aggregation and, in a small region of the phase diagram, crystallization. By comparing our measurements of the onset of aggregation with predictions for hard colloids and ideal polymers [S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006) and Lo Verso et al., Phys. Rev. E 73, 061407 (2006)], we find good agreement, which suggests that the behavior of the eGFP is consistent with that of hard spherocylinders and ideal polymers.


Subject(s)
Colloids , Polymers , Protein Aggregates , Proteins , Colloids/chemistry , Crystallization , Polymers/chemistry , Proteins/chemistry
7.
ACS Catal ; 11(18): 11532-11541, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34557328

ABSTRACT

Conformational sampling profoundly impacts the overall activity and temperature dependence of enzymes. Peroxidases have emerged as versatile platforms for high-value biocatalysis owing to their broad palette of potential biotransformations. Here, we explore the role of conformational sampling in mediating activity in the de novo peroxidase C45. We demonstrate that 2,2,2-triflouoroethanol (TFE) affects the equilibrium of enzyme conformational states, tending toward a more globally rigid structure. This is correlated with increases in both stability and activity. Notably, these effects are concomitant with the emergence of curvature in the temperature-activity profile, trading off activity gains at ambient temperature with losses at high temperatures. We apply macromolecular rate theory (MMRT) to understand enzyme temperature dependence data. These data point to an increase in protein rigidity associated with a difference in the distribution of protein dynamics between the ground and transition states. We compare the thermodynamics of the de novo enzyme activity to those of a natural peroxidase, horseradish peroxidase. We find that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the putative distribution of protein dynamics between the ground and transition states. The addition of TFE apparently causes C45 to behave more like the natural enzyme. Our data suggest robust, generic strategies for improving biocatalytic activity by manipulating protein rigidity; for functional de novo protein catalysts in particular, this can provide more enzyme-like catalysts without further rational engineering, computational redesign, or directed evolution.

8.
Nat Chem ; 13(10): 1017-1022, 2021 10.
Article in English | MEDLINE | ID: mdl-34413499

ABSTRACT

Activation heat capacity is emerging as a crucial factor in enzyme thermoadaptation, as shown by the non-Arrhenius behaviour of many natural enzymes. However, its physical origin and relationship to the evolution of catalytic activity remain uncertain. Here we show that directed evolution of a computationally designed Kemp eliminase reshapes protein dynamics, which gives rise to an activation heat capacity absent in the original design. These changes buttress transition-state stabilization. Extensive molecular dynamics simulations show that evolution results in the closure of solvent-exposed loops and a better packing of the active site. Remarkably, this gives rise to a correlated dynamical network that involves the transition state and large parts of the protein. This network tightens the transition-state ensemble, which induces a negative activation heat capacity and non-linearity in the activity-temperature dependence. Our results have implications for understanding enzyme evolution and suggest that selectively targeting the conformational dynamics of the transition-state ensemble by design and evolution will expedite the creation of novel enzymes.


Subject(s)
Enzymes/metabolism , Evolution, Chemical , Catalysis , Enzymes/chemistry , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
9.
Soft Matter ; 17(28): 6873-6883, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34231559

ABSTRACT

Natural and artificial proteins with designer properties and functionalities offer unparalleled opportunity for functional nanoarchitectures formed through self-assembly. However, to exploit this potential we need to design the system such that assembly results in desired architecture forms while avoiding denaturation and therefore retaining protein functionality. Here we address this challenge with a model system of fluorescent proteins. By manipulating self-assembly using techniques inspired by soft matter where interactions between the components are controlled to yield the desired structure, we have developed a methodology to assemble networks of proteins of one species which we can decorate with another, whose coverage we can tune. Consequently, the interfaces between domains of each component can also be tuned, with potential applications for example in energy - or electron - transfer. Our model system of eGFP and mCherry with tuneable interactions reveals control over domain sizes in the resulting networks.


Subject(s)
Nanostructures , Proteins
10.
Biochem J ; 478(13): 2601-2617, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34142705

ABSTRACT

NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH- to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.


Subject(s)
Anti-Bacterial Agents/metabolism , Benzoquinones/metabolism , Escherichia coli Proteins/metabolism , Flavin Mononucleotide/metabolism , Nitrofurantoin/metabolism , Nitroreductases/metabolism , Anti-Bacterial Agents/chemistry , Benzoquinones/chemistry , Binding Sites/genetics , Biocatalysis , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Flavin Mononucleotide/chemistry , Kinetics , Molecular Dynamics Simulation , Molecular Structure , NADP/metabolism , Nitrofurantoin/chemistry , Nitroreductases/chemistry , Nitroreductases/genetics , Oxidation-Reduction , Protein Binding , Protein Domains , Substrate Specificity
11.
J Inorg Biochem ; 217: 111370, 2021 04.
Article in English | MEDLINE | ID: mdl-33621939

ABSTRACT

The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon­carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.


Subject(s)
Peroxidases/chemistry , Binding Sites , Heme/chemistry , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Peroxidases/metabolism , Protein Binding , Substrate Specificity
12.
Curr Opin Struct Biol ; 67: 212-218, 2021 04.
Article in English | MEDLINE | ID: mdl-33517098

ABSTRACT

De novo enzymes can be created by computational design and directed evolution. Here, we review recent insights into the origins of catalytic power in evolved designer enzymes to pinpoint opportunities for next-generation designs: Evolution precisely organizes active sites, introduces catalytic H-bonding networks, invokes electrostatic catalysis, and creates dynamical networks embedding the active site in a reactive protein scaffold. Such insights foster our fundamental knowledge of enzyme catalysis and fuel the future design of tailor-made enzymes.


Subject(s)
Directed Molecular Evolution , Enzymes , Proteins , Catalysis , Catalytic Domain , Enzymes/genetics , Enzymes/metabolism , Protein Engineering , Proteins/genetics , Static Electricity
13.
Sci Rep ; 10(1): 15203, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938984

ABSTRACT

Alpha-helical integral membrane proteins contain conserved sequence motifs that are known to be important in helix packing. These motifs are a promising starting point for the construction of artificial proteins, but their potential has not yet been fully explored. Here, we study the impact of introducing a common natural helix packing motif to the transmembrane domain of a genetically-encoded and structurally dynamic de novo membrane protein. The resulting construct is an artificial four-helix bundle with lipophilic regions that are defined only by the amino acids L, G, S, A and W. This minimal proto-protein could be recombinantly expressed by diverse prokaryotic and eukaryotic hosts and was found to co-sediment with cellular membranes. The protein could be extracted and purified in surfactant micelles and was monodisperse and stable in vitro, with sufficient structural definition to support the rapid binding of a heme cofactor. The reduction in conformational diversity imposed by this design also enhances the nascent peroxidase activity of the protein-heme complex. Unexpectedly, strains of Escherichia coli expressing this artificial protein specifically accumulated zinc protoporphyrin IX, a rare cofactor that is not used by natural metalloenzymes. Our results demonstrate that simple sequence motifs can rigidify elementary membrane proteins, and that orthogonal artificial membrane proteins can influence the cofactor repertoire of a living cell. These findings have implications for rational protein design and synthetic biology.


Subject(s)
Escherichia coli/growth & development , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mutation , Amino Acid Motifs , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/genetics , Models, Molecular , Protein Engineering , Protein Structure, Secondary , Protoporphyrins/metabolism
14.
ACS Catal ; 10(4): 2735-2746, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32550044

ABSTRACT

Nature employs a limited number of genetically encoded axial ligands to control diverse heme enzyme activities. Deciphering the functional significance of these ligands requires a quantitative understanding of how their electron-donating capabilities modulate the structures and reactivities of the iconic ferryl intermediates compounds I and II. However, probing these relationships experimentally has proven to be challenging as ligand substitutions accessible via conventional mutagenesis do not allow fine tuning of electron donation and typically abolish catalytic function. Here, we exploit engineered translation components to replace the histidine ligand of cytochrome c peroxidase (CcP) by a less electron-donating N δ-methyl histidine (Me-His) with little effect on the enzyme structure. The rate of formation (k 1) and the reactivity (k 2) of compound I are unaffected by ligand substitution. In contrast, proton-coupled electron transfer to compound II (k 3) is 10-fold slower in CcP Me-His, providing a direct link between electron donation and compound II reactivity, which can be explained by weaker electron donation from the Me-His ligand ("the push") affording an electron-deficient ferryl oxygen with reduced proton affinity ("the pull"). The deleterious effects of the Me-His ligand can be fully compensated by introducing a W51F mutation designed to increase "the pull" by removing a hydrogen bond to the ferryl oxygen. Analogous substitutions in ascorbate peroxidase lead to similar activity trends to those observed in CcP, suggesting that a common mechanistic strategy is employed by enzymes using distinct electron transfer pathways. Our study highlights how noncanonical active site substitutions can be used to directly probe and deconstruct highly evolved bioinorganic mechanisms.

15.
Proc Natl Acad Sci U S A ; 117(3): 1419-1428, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31896585

ABSTRACT

By constructing an in vivo-assembled, catalytically proficient peroxidase, C45, we have recently demonstrated the catalytic potential of simple, de novo-designed heme proteins. Here, we show that C45's enzymatic activity extends to the efficient and stereoselective intermolecular transfer of carbenes to olefins, heterocycles, aldehydes, and amines. Not only is this a report of carbene transferase activity in a completely de novo protein, but also of enzyme-catalyzed ring expansion of aromatic heterocycles via carbene transfer by any enzyme.


Subject(s)
Biocatalysis , Escherichia coli Proteins/chemistry , Methane/analogs & derivatives , Peroxidases/chemistry , Aldehydes/chemistry , Alkenes/chemistry , Amines/chemistry , Escherichia coli , Escherichia coli Proteins/metabolism , Methane/chemistry , Peroxidases/metabolism , Substrate Specificity
16.
Angew Chem Int Ed Engl ; 58(41): 14594-14598, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31408263

ABSTRACT

Coacervate microdroplets produced by liquid-liquid phase separation have been used as synthetic protocells that mimic the dynamical organization of membrane-free organelles in living systems. Achieving spatiotemporal control over droplet condensation and disassembly remains challenging. Herein, we describe the formation and photoswitchable behavior of light-responsive coacervate droplets prepared from mixtures of double-stranded DNA and an azobenzene cation. The droplets disassemble and reassemble under UV and blue light, respectively, due to azobenzene trans/cis photoisomerisation. Sequestration and release of captured oligonucleotides follow the dynamics of phase separation such that light-activated transfer, mixing, hybridization, and trafficking of the oligonucleotides can be controlled in binary populations of the droplets. Our results open perspectives for the spatiotemporal control of DNA coacervates and provide a step towards the dynamic regulation of synthetic protocells.


Subject(s)
DNA/chemistry , Light , Microfluidic Analytical Techniques , Oligonucleotides/chemistry , Artificial Cells , Chemical Fractionation
17.
Sci Rep ; 8(1): 14564, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275547

ABSTRACT

The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences.


Subject(s)
Escherichia coli/chemistry , Gene Expression , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cell Membrane/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/metabolism , Membrane Proteins/chemistry , Protein Binding , Protein Conformation , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
18.
J R Soc Interface ; 15(145)2018 08.
Article in English | MEDLINE | ID: mdl-30158186

ABSTRACT

A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.


Subject(s)
Protein Engineering/methods , Humans
19.
ACS Synth Biol ; 7(2): 339-346, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29091420

ABSTRACT

A gene-directed chemical communication pathway between synthetic protocell signaling transmitters (lipid vesicles) and receivers (proteinosomes) was designed, built and tested using a bottom-up modular approach comprising small molecule transcriptional control, cell-free gene expression, porin-directed efflux, substrate signaling, and enzyme cascade-mediated processing.


Subject(s)
Artificial Cells/metabolism , Signal Transduction , Transcription, Genetic , Artificial Cells/chemistry , Cell-Free System/chemistry , Cell-Free System/metabolism
20.
Nat Commun ; 8(1): 358, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842561

ABSTRACT

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.


Subject(s)
Peroxidase/chemical synthesis , Protein Engineering , Binding Sites , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peroxidase/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...