Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gene Ther ; 31(3-4): 95-104, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37699965

ABSTRACT

Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.


Subject(s)
Adipose Tissue , Liver , Mice , Female , Animals , Adipose Tissue/metabolism , Liver/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Mice, Transgenic , Genetic Therapy
2.
PLoS One ; 18(3): e0282566, 2023.
Article in English | MEDLINE | ID: mdl-36893171

ABSTRACT

BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Noncommunicable Diseases , Animals , Mice , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Hypothalamus/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Receptor, trkB/genetics , Receptor, trkB/metabolism
3.
Mol Ther Methods Clin Dev ; 27: 131-148, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36284766

ABSTRACT

Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.

4.
Metabolites ; 10(2)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102223

ABSTRACT

Synaptosomes are isolated nerve terminals that contain synaptic components, including neurotransmitters, metabolites, adhesion/fusion proteins, and nerve terminal receptors. The essential role of synaptosomes in neurotransmission has stimulated keen interest in understanding both their proteomic and metabolic composition. Mass spectrometric (MS) quantification of synaptosomes has illuminated their proteomic composition, but the determination of the metabolic composition by MS has been met with limited success. In this study, we report a proof-of-concept application of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy for analyzing the metabolic composition of synaptosomes. We utilize this approach to compare the metabolic composition synaptosomes from a wild-type rat with that from a newly generated genetic rat model (Disc1 svΔ2), which qualitatively recapitulates clinically observed early DISC1 truncations associated with schizophrenia. This study demonstrates the feasibility of using NMR spectroscopy to identify and quantify metabolites within synaptosomal fractions.

5.
Aging (Albany NY) ; 12(3): 2101-2122, 2020 02 02.
Article in English | MEDLINE | ID: mdl-32007953

ABSTRACT

As the elderly population grows, chronic metabolic dysfunction including obesity and diabetes are becoming increasingly common comorbidities. Hypothalamic inflammation through CNS resident microglia serves as a common pathway between developing obesity and developing systemic aging pathologies. Despite understanding aging as a life-long process involving interactions between individuals and their environment, limited studies address the dynamics of environment interactions with aging or aging therapeutics. We previously demonstrated environmental enrichment (EE) is an effective model for studying improved metabolic health and overall healthspan in mice, which acts through a brain-fat axis. Here we investigated the CSF1R inhibitor PLX5622 (PLX), which depletes microglia, and its effects on metabolic decline in aging in interaction with EE. PLX in combination with EE substantially improved metabolic outcomes in middle-aged female mice over PLX or EE alone. Chronic PLX treatment depleted 75% of microglia from the hypothalamus and reduced markers of inflammation without affecting brain-derived neurotrophic factor levels induced by EE. Adipose tissue remodeling and adipose tissue macrophage modulation were observed in response to CSF1R inhibition, which may contribute to the combined benefits seen in EE with PLX. Our study suggests benefits exist from combined drug and lifestyle interventions in aged animals.


Subject(s)
Adipose Tissue/drug effects , Aging/metabolism , Housing, Animal , Microglia/drug effects , Organic Chemicals/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Social Environment , Adipose Tissue/metabolism , Animals , Body Composition/drug effects , Body Weight/drug effects , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Corticotropin-Releasing Hormone/drug effects , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Female , Glial Fibrillary Acidic Protein/drug effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Glucose Tolerance Test , Gonadotropin-Releasing Hormone/drug effects , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Inflammation/genetics , Inflammation/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Neuropeptide Y/drug effects , Neuropeptide Y/genetics , Pro-Opiomelanocortin/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Protein Kinase Inhibitors/pharmacology , Transcriptome/drug effects , Weight Loss
6.
Magn Reson Imaging ; 61: 90-96, 2019 09.
Article in English | MEDLINE | ID: mdl-31103832

ABSTRACT

Recent studies have investigated the effectiveness of aerobic exercise to improve physical and mental health outcomes in schizophrenia; however, few have explicitly explored the impact of aerobic exercise on neural microstructure, which is hypothesized to mediate the behavioral changes observed. Neural microstructure is influenced by numerous genetic factors including DISC1, which is a major molecular scaffold protein that interacts with partners like GSK3ß, NDEL1, and PDE4. DISC1 has been shown to play a role in neurogenesis, neuronal migration, neuronal maturation, and synaptic signaling. As with other genetic variants that present an increased risk for disease, mutations of the DISC1 gene have been implicated in the molecular intersection of schizophrenia and numerous other major psychiatric illnesses. This study investigated whether short-term exercise recovers deficits in neural microstructure in a novel genetic Disc1 svΔ2 rat model. Disc1 svΔ2 animals and age- and sex-matched controls were subjected to a treadmill exercise protocol. Subsequent ex-vivo diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) compared neural microstructure in regions of interest (ROI) between sedentary and exercise wild-type animals and between sedentary and exercise Disc1 svΔ2 animals. Short-term exercise uncovered no significant differences in neural microstructure between sedentary and exercise control animals but did lead to significant differences between sedentary and exercise Disc1 svΔ2 animals in neocortex, basal ganglia, corpus callosum, and external capsule, suggesting a positive benefit derived from a short-term exercise regimen. Our findings suggest that Disc1 svΔ2 animals are more sensitive to the effects of short-term exercise and highlight the ameliorating potential of positive treatment interventions such as exercise on neural microstructure in genetic backgrounds of psychiatric disease susceptibility.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Nerve Tissue Proteins , Neurons/ultrastructure , Physical Conditioning, Animal/methods , Schizophrenia/pathology , Animals , Brain/pathology , Brain/ultrastructure , Disease Models, Animal , Humans , Male , Mutation , Rats , Rats, Sprague-Dawley
7.
Transl Psychiatry ; 9(1): 82, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30745562

ABSTRACT

Diffusion tensor imaging (DTI) has provided remarkable insight into our understanding of white matter microstructure and brain connectivity across a broad spectrum of psychiatric disease. While DTI and other diffusion weighted magnetic resonance imaging (MRI) methods have clarified the axonal contribution to the disconnectivity seen in numerous psychiatric diseases, absent from these studies are quantitative indices of neurite density and orientation that are especially important features in regions of high synaptic density that would capture the synaptic contribution to the psychiatric disease state. Here we report the application of neurite orientation dispersion and density imaging (NODDI), an emerging microstructure imaging technique, to a novel Disc1 svΔ2 rat model of psychiatric illness and demonstrate the complementary and more specific indices of tissue microstructure found in NODDI than those reported by DTI. Our results demonstrate global and sex-specific changes in white matter microstructural integrity and deficits in neurite density as a consequence of the Disc1 svΔ2 genetic variation and highlight the application of NODDI and quantitative measures of neurite density and neurite dispersion in psychiatric disease.


Subject(s)
Mental Disorders/pathology , Nerve Tissue Proteins/genetics , Neurites/pathology , Sex Factors , White Matter/diagnostic imaging , Animals , Anisotropy , Diffusion Tensor Imaging , Disease Models, Animal , Exons , Female , Male , Neural Pathways/pathology , Neurites/ultrastructure , Physical Conditioning, Animal , Rats , Rats, Sprague-Dawley , Reflex, Startle , White Matter/pathology , White Matter/ultrastructure
8.
Magn Reson Imaging ; 58: 148-155, 2019 05.
Article in English | MEDLINE | ID: mdl-30776455

ABSTRACT

Alterations in gut microbiome populations via dietary manipulation have been shown to induce diet-dependent changes in white matter microstructure. The purpose of this study is to examine the durability of these diet-induced microstructural alterations. We implemented a crossover experimental design where post-weaned male rats were assigned to one of four experimental diets. Following the administration of experimental diets and again following crossover and resumption of a normal diet, brains were imaged ex-vivo with diffusion tensor imaging. Following standard image preprocessing, tract-based spatial statistics and region-of-interest measurements were then calculated for all diffusion tensor indices. Voxel-wise differences in FA were identified in the high fat diet group when compared to animals receiving a control diet. Following crossover, there were new voxel-wise changes in both FA and TR that do not correspond to the regions previously identified. Animals crossed over from the high fiber diet demonstrate widespread and global changes in the diffusion tensor that stand in stark contrast to the minimal changes identified before crossover. While no significant differences between any of the diffusion metrics were identified in the high protein group before crossover, statistically significant decreased RD values were observed following resumption of a normal diet. Diet-induced changes in neural microstructure are durable changes that are unrecoverable following the resumption of a normal diet. We further show that in certain experimental diets, resumption of a normal diet can lead to further marked and unanticipated changes in white matter microstructure.


Subject(s)
Animal Feed , Endophenotypes , Gastrointestinal Microbiome , Mental Disorders/diagnostic imaging , Nervous System Diseases/diagnostic imaging , White Matter/diagnostic imaging , Animals , Anisotropy , Brain/diagnostic imaging , Brain Mapping , Cross-Over Studies , Diet , Diffusion Tensor Imaging , Disease Models, Animal , Image Processing, Computer-Assisted , Male , Rats , Rats, Sprague-Dawley
9.
J Clin Lipidol ; 8(3): 256-64, 2014.
Article in English | MEDLINE | ID: mdl-24793346

ABSTRACT

BACKGROUND: The proprotein convertase subtilisin/kexin type 9 (PCSK9) has a key role in the regulation of plasma low-density lipoprotein (LDL) cholesterol by enhancing the degradation of LDL receptor. Functional variants in PCSK9 have been associated with differences in plasma lipids and may contribute to the variability of the response to cholesterol-lowering drugs. OBJECTIVE: To investigate the influence of PCSK9 variants on plasma lipid profile and response to atorvastatin in Brazilian subjects. METHODS: PCSK9 E670G, I474V, and R46L single nucleotide polymorphisms (SNPs) and plasma lipids were evaluated in 163 hypercholesterolemics (HC) and 171 normolipidemics (NL). HC patients with indication for cholesterol-lowering drug therapy (n = 128) were treated with atorvastatin (10 mg/d/4 wk). PCSK9 SNPs were analyzed by real time polymerase chain reaction. RESULTS: Frequencies of the PCSK9 SNPs were similar between the HC and NL groups. Logistic regression analysis showed a trend of association between PCSK9 E670G and hypercholesterolemia after adjustment for covariates (P = .059). The 670G allele was associated with high basal levels of LDL cholesterol (P = .03) in HC patients using the extreme discordant phenotype method. No association tests were performed for R46L variant because of its very low frequency, whereas the I474V polymorphism and PCSK9 haplotypes were not related to hypercholesterolemia or variability on plasma lipids in both NL and HC groups (P > .05). LDL cholesterol reduction in response to atorvastatin was not influenced by PCSK9 genotypes or haplotypes. CONCLUSIONS: PCSK9 E670G polymorphism but not I474V contributes to the variability on plasma LDL cholesterol levels in hypercholesterolemic subjects. Both PCSK9 variants have no influence on cholesterol-lowering response to atorvastatin.


Subject(s)
Biomarkers, Pharmacological/metabolism , Cholesterol, LDL/metabolism , Hypercholesterolemia/genetics , Mutation/genetics , Proprotein Convertases/genetics , Serine Endopeptidases/genetics , Adult , Aged , Atorvastatin , Brazil , Female , Heptanoic Acids/administration & dosage , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide , Proprotein Convertase 9 , Proprotein Convertases/metabolism , Pyrroles/administration & dosage , Serine Endopeptidases/metabolism , Treatment Outcome
10.
J. clin. lipidol ; 08(03): 256-264, 2014. ilus
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1063837

ABSTRACT

BackgroundThe proprotein convertase subtilisin/kexin type 9 (PCSK9) has a key role in the regulation of plasma low-density lipoprotein (LDL) cholesterol by enhancing the degradation of LDL receptor. Functional variants in PCSK9 have been associated with differences in plasma lipids and may contribute to the variability of the response to cholesterol-lowering drugs.ObjectiveTo investigate the influence of PCSK9 variants on plasma lipid profile and response to atorvastatin in Brazilian subjects.MethodsPCSK9 E670G, I474V, and R46L single nucleotide polymorphisms (SNPs) and plasma lipids were evaluated in 163 hypercholesterolemics (HC) and 171 normolipidemics (NL). HC patients with indication for cholesterol-lowering drug therapy (n = 128) were treated with atorvastatin (10 mg/d/4 wk). PCSK9 SNPs were analyzed by real time polymerase chain reaction.ResultsFrequencies of the PCSK9 SNPs were similar between the HC and NL groups. Logistic regression analysis showed a trend of association between PCSK9 E670G and hypercholesterolemia after adjustment for covariates (P = .059). The 670G allele was associated with high basal levels of LDL cholesterol (P = .03) in HC patients using the extreme discordant phenotype method. No association tests were performed for R46L variant because of its very low frequency, whereas the I474V polymorphism and PCSK9 haplotypes were not related to hypercholesterolemia or variability on plasma lipids in both NL and HC groups (P > .05). LDL cholesterol reduction in response to atorvastatin was not influenced by PCSK9 genotypes or haplotypes.


Subject(s)
Cholesterol , Polymorphism, Single Nucleotide
11.
Journal of Clinical Lipidology ; 8: 256-264, 2014. tab
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1064222

ABSTRACT

BACKGROUND: The proprotein convertase subtilisin/kexin type 9 (PCSK9) has a key role in theregulation of plasma low-density lipoprotein (LDL) cholesterol by enhancing the degradation ofLDL receptor. Functional variants in PCSK9 have been associated with differences in plasma lipidsand may contribute to the variability of the response to cholesterol-lowering drugs.OBJECTIVE: To investigate the influence of PCSK9 variants on plasma lipid profile and response toatorvastatin in Brazilian subjects.METHODS: PCSK9 E670G, I474V, and R46L single nucleotide polymorphisms (SNPs) and plasmalipids were evaluated in 163 hypercholesterolemics (HC) and 171 normolipidemics (NL). HC patientswith indication for cholesterol-lowering drug therapy (n 5 128) were treated with atorvastatin (10 mg/d/4 wk). PCSK9 SNPs were analyzed by real time polymerase chain reaction.RESULTS: Frequencies of the PCSK9 SNPs were similar between the HC and NL groups. Logisticregression analysis showed a trend of association between PCSK9 E670G and hypercholesterolemiaafter adjustment for covariates (P 5 .059). The 670G allele was associated with high basal levels ofLDL cholesterol (P 5 .03) in HC patients using the extreme discordant phenotype method. Noassociation tests were performed for R46L variant because of its very low frequency, whereas theI474V polymorphism and PCSK9 haplotypes were not related to hypercholesterolemia or variabilityon plasma lipids in both NL and HC groups (P ..05). LDL cholesterol reduction in response to atorvastatinwas not influenced by PCSK9 genotypes or haplotypes.CONCLUSIONS: PCSK9 E670G polymorphism but not I474V contributes to the variability onplasma LDL cholesterol levels in hypercholesterolemic subjects. Both PCSK9 variants have no influenceon cholesterol-lowering response to atorvastatin. 2014 National Lipid Association. All rights reserved.


Subject(s)
Cholesterol , Pharmacogenetics , Polymorphism, Genetic
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(25): 2363-8, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20702150

ABSTRACT

Oxypurinol is the active metabolite of allopurinol which is used to treat hyperuricaemia associated with gout. Both oxypurinol and allopurinol inhibit xanthine oxidase which forms uric acid from xanthine and hypoxanthine. Plasma oxypurinol concentrations vary substantially between individuals and the source of this variability remains unclear. The aim of this study was to develop an HPLC-tandem mass spectrometry method to measure oxypurinol in urine to facilitate the study of the renal elimination of oxypurinol in patients with gout. Urine samples (50 microL) were prepared by dilution with a solution of acetonitrile/methanol/water (95/2/3, v/v; 2 mL) that contained the internal standard (8-methylxanthine; 1.5 mg/L), followed by centrifugation. An aliquot (2 microL) was injected. Chromatography was performed on an Atlantis HILIC Silica column (3 microm, 100 mm x 2.1mm, Waters) at 30 degrees C, using a mobile phase comprised of acetonitrile/methanol/50 mM ammonium acetate in 0.2% formic acid (95/2/3, v/v). Using a flow rate of 0.35 mL/min, the analysis time was 6.0 min. Mass spectrometric detection was by selected reactant monitoring (oxypurinol: m/z 150.8-->108.0; internal standard: m/z 164.9-->121.8) in negative electrospray ionization mode. Calibration curves were prepared in drug-free urine across the range 10-200 mg/L and fitted using quadratic regression with a weighting factor of 1/x (r(2) > 0.997, n=7). Quality control samples (20, 80, 150 and 300 mg/L) were used to determine intra-day (n=5) and inter-day (n=7) accuracy and imprecision. The inter-day accuracy and imprecision was 96.1-104% and <11.2%, respectively. Urinary oxypurinol samples were stable when subjected to 3 freeze-thaw cycles and when stored at room temperature for up to 6h. Samples collected from 10 patients, not receiving allopurinol therapy, were screened and showed no significant interferences. The method was suitable for the quantification of oxypurinol in the urine of patients (n=34) participating in a clinical trial to optimize therapy of gout with allopurinol.


Subject(s)
Chromatography, High Pressure Liquid/methods , Oxypurinol/urine , Tandem Mass Spectrometry/methods , Allopurinol/therapeutic use , Drug Stability , Gout/drug therapy , Gout/urine , Humans , Hyperuricemia/drug therapy , Hyperuricemia/urine , Regression Analysis , Reproducibility of Results , Sensitivity and Specificity , Xanthines/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...