Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0293901, 2023.
Article in English | MEDLINE | ID: mdl-37939135

ABSTRACT

BACKGROUND: Anemia is an important cause of morbidity and mortality in dogs. Further understanding of the prevalence of vector borne diseases (VBD) in anemic dogs is needed. OBJECTIVES: The objective of this retrospective study was to describe the rate of exposure to or infection with VBD among anemic dogs presented to a teaching hospital in North Carolina and to further characterize the anemia in dogs with VBD exposure. ANIMALS: A total of 597 anemic dogs that were concurrently tested for VBD were examined at a referral veterinary hospital between January 2012 and December 2018. METHODS: Retrospective descriptive study. Demographic, clinicopathologic, and VBD testing data were obtained from medical records. RESULTS: Of the 597 anemic dogs examined, 180 (30.15%; 95% CI: 26.49-34.01%) tested positive for one or more VBD. There was no difference in the severity of anemia or the proportion of dogs displaying a regenerative anemia between dogs testing positive and negative for VBD. CONCLUSIONS: A large proportion of anemic dogs from this region test positive for exposure to or infection with VBD. Our study supported the use of PCR and serology run in parallel to maximize the chance of detecting exposure to or infection with VBD compared to either serology or PCR alone. At this time, it is unknown whether infection with VBD contributed to the development of anemia in these patients. However, given the prevalence of VBD exposure in anemic dogs, testing for VBD in anemic patients from this region of the United States is warranted.


Subject(s)
Anemia , Dog Diseases , Vector Borne Diseases , Humans , Animals , Dogs , Retrospective Studies , North Carolina/epidemiology , Prevalence , Vector Borne Diseases/epidemiology , Anemia/epidemiology , Anemia/veterinary , Anemia/complications , Dog Diseases/diagnosis
2.
Biomedicines ; 10(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36009470

ABSTRACT

Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.

3.
Aging Cell ; 21(7): e13661, 2022 07.
Article in English | MEDLINE | ID: mdl-35717599

ABSTRACT

Neuronal hippocampal Ca2+ dysregulation is a critical component of cognitive decline in brain aging and Alzheimer's disease and is suggested to impact communication and excitability through the activation of a larger after hyperpolarization. However, few studies have tested for the presence of Ca2+ dysregulation in vivo, how it manifests, and whether it impacts network function across hundreds of neurons. Here, we tested for neuronal Ca2+ network dysregulation in vivo in the primary somatosensory cortex (S1) of anesthetized young and aged male Fisher 344 rats using single-cell resolution techniques. Because S1 is involved in sensory discrimination and proprioception, we tested for alterations in ambulatory performance in the aged animal and investigated two potential pathways underlying these central aging- and Ca2+ -dependent changes. Compared to young, aged animals displayed increased overall activity and connectivity of the network as well as decreased ambulatory speed. In aged animals, intranasal insulin (INI) increased network synchronicity and ambulatory speed. Importantly, in young animals, delivery of the L-type voltage-gated Ca2+ channel modifier Bay-K 8644 altered network properties, replicating some of the changes seen in the older animal. These results suggest that hippocampal Ca2+ dysregulation may be generalizable to other areas, such as S1, and might engage modalities that are associated with locomotor stability and motivation to ambulate. Further, given the safety profile of INI in the clinic and the evidence presented here showing that this central dysregulation is sensitive to insulin, we suggest that these processes can be targeted to potentially increase motivation and coordination while also reducing fall frequency with age.


Subject(s)
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacokinetics , Aging/physiology , Calcium Channel Agonists/pharmacology , Calcium/metabolism , Hippocampus/metabolism , Insulin , Somatosensory Cortex/metabolism , Animals , Gait/physiology , Hippocampus/cytology , Insulin/metabolism , Male , Motivation , Neurons/metabolism , Patch-Clamp Techniques , Rats , Rats, Inbred F344
4.
J Alzheimers Dis ; 78(4): 1419-1438, 2020.
Article in English | MEDLINE | ID: mdl-33164928

ABSTRACT

BACKGROUND: In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer's disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular events (e.g., oxidation, amyloid-ß production, and neuroinflammation). Further, neuronal calcium dysregulation is not always present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker. OBJECTIVE: Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and female 5×FAD mice on a C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 imaging. We focused on three ages that coincide with the course of amyloid deposition: 1.5, 4, and 10 months old. METHODS: Outcome variables included measures of the afterhyperpolarization, short-term synaptic plasticity, and calcium kinetics during synaptic activation. Quantitative analyses of spatial learning and memory were also conducted using the Morris water maze. Main effects of sex, age, and genotype were identified on measures of electrophysiology and calcium imaging. RESULTS: Measures of resting Oregon-green Bapta-1 fluorescence showed significant reductions in the 5×FAD group compared to controls. Deficits in spatial memory, along with increases in Aß load, were detectable at older ages, allowing us to test for temporal associations with the onset of calcium dysregulation. CONCLUSION: Our results provide evidence that reduced, rather than elevated, neuronal calcium is identified in this 5×FAD model and suggests that this surprising result may be a novel biomarker of AD.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Calcium/metabolism , Hippocampus/metabolism , Neurons/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Hippocampus/cytology , Hippocampus/physiopathology , Humans , Male , Mice , Mice, Transgenic , Morris Water Maze Test , Neuronal Plasticity , Optical Imaging , Patch-Clamp Techniques , Plaque, Amyloid/physiopathology , Presenilin-1/genetics , Sex Factors , Spatial Learning , Spatial Memory
5.
Front Neurosci ; 14: 668, 2020.
Article in English | MEDLINE | ID: mdl-32733189

ABSTRACT

Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRß). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRß show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRß treatment. Quantification of Western immunoblots show that IRß is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.

6.
Aging Cell ; 19(10): e13220, 2020 10.
Article in English | MEDLINE | ID: mdl-32852134

ABSTRACT

As demonstrated by increased hippocampal insulin receptor density following learning in animal models and decreased insulin signaling, receptor density, and memory decline in aging and Alzheimer's diseases, numerous studies have emphasized the importance of insulin in learning and memory processes. This has been further supported by work showing that intranasal delivery of insulin can enhance insulin receptor signaling, alter cerebral blood flow, and improve memory recall. Additionally, inhibition of insulin receptor function or expression using molecular techniques has been associated with reduced learning. Here, we sought a different approach to increase insulin receptor activity without the need for administering the ligand. A constitutively active, modified human insulin receptor (IRß) was delivered to the hippocampus of young (2 months) and aged (18 months) male Fischer 344 rats in vivo. The impact of increasing hippocampal insulin receptor expression was investigated using several outcome measures, including Morris water maze and ambulatory gait performance, immunofluorescence, immunohistochemistry, and Western immunoblotting. In aged animals, the IRß construct was associated with enhanced performance on the Morris water maze task, suggesting that this receptor was able to improve memory recall. Additionally, in both age-groups, a reduced stride length was noted in IRß-treated animals along with elevated hippocampal insulin receptor levels. These results provide new insights into the potential impact of increasing neuronal insulin signaling in the hippocampus of aged animals and support the efficacy of molecularly elevating insulin receptor activity in vivo in the absence of the ligand to directly study this process.


Subject(s)
Memory Disorders/metabolism , Receptor, Insulin/metabolism , Aging/metabolism , Animals , Genetic Engineering , Humans , Male , Maze Learning , Memory Disorders/genetics , Rats , Rats, Inbred F344 , Receptor, Insulin/biosynthesis , Receptor, Insulin/genetics , Signal Transduction
7.
Kidney360 ; 1(5): 376-388, 2020 May 28.
Article in English | MEDLINE | ID: mdl-35224510

ABSTRACT

BACKGROUND: Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and is increasing in incidence. Despite new therapies, including targeted therapies and immunotherapies, most RCCs are resistant to treatment. Thus, several laboratories have been evaluating new approaches to therapy, both with single agents as well as combinations. Although we have previously shown efficacy of the dual PAK4/nicotinamide phosphoribosyltransferase (NAMPT) inhibitor KPT-9274, and the immune checkpoint inhibitors (CPI) have shown utility in the clinic, there has been no evaluation of this combination either clinically or in an immunocompetent animal model of kidney cancer. METHODS: In this study, we use the renal cell adenocarcinoma (RENCA) model of spontaneous murine kidney cancer. Male BALB/cJ mice were injected subcutaneously with RENCA cells and, after tumors were palpable, they were treated with KPT-9274 and/or anti-programmed cell death 1 (PDCD1; PD1) antibody for 21 days. Tumors were measured and then removed at animal euthanasia for subsequent studies. RESULTS: We demonstrate a significant decrease in allograft growth with the combination treatment of KPT-9274 and anti-PD1 antibody without significant weight loss by the animals. This is associated with decreased (MOUSE) Naprt expression, indicating dependence of these tumors on NAMPT in parallel to what we have observed in human RCC. Histology of the tumors showed substantial necrosis regardless of treatment condition, and flow cytometry of antibody-stained tumor cells revealed that the enhanced therapeutic effect of KPT-9274 and anti-PD1 antibody was not driven by infiltration of T cells into tumors. CONCLUSIONS: This study highlights the potential of the RENCA model for evaluating immunologic responses to KPT-9274 and checkpoint inhibitor (CPI) and suggests that therapy with this combination could improve efficacy in RCC beyond what is achievable with CPI alone.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Apoptosis Regulatory Proteins/pharmacology , Carcinoma, Renal Cell/drug therapy , Cell Proliferation , Kidney Neoplasms/drug therapy , Male , Mice , Nicotinamide Phosphoribosyltransferase
8.
J Gerontol A Biol Sci Med Sci ; 75(6): 1021-1030, 2020 05 22.
Article in English | MEDLINE | ID: mdl-31180116

ABSTRACT

Intranasal insulin is a safe and effective method for ameliorating memory deficits associated with pathological brain aging. However, the impact of different formulations and the duration of treatment on insulin's efficacy and the cellular processes targeted by the treatment remain unclear. Here, we tested whether intranasal insulin aspart, a short-acting insulin formulation, could alleviate memory decline associated with aging and whether long-term treatment affected regulation of insulin receptors and other potential targets. Outcome variables included measures of spatial learning and memory, autoradiography and immunohistochemistry of the insulin receptor, and hippocampal microarray analyses. Aged Fischer 344 rats receiving long-term (3 months) intranasal insulin did not show significant memory enhancement on the Morris water maze task. Autoradiography results showed that long-term treatment reduced insulin binding in the thalamus but not the hippocampus. Results from hippocampal immunofluorescence revealed age-related decreases in insulin immunoreactivity that were partially offset by intranasal administration. Microarray analyses highlighted numerous insulin-sensitive genes, suggesting insulin aspart was able to enter the brain and alter hippocampal RNA expression patterns including those associated with tumor suppression. Our work provides insights into potential mechanisms of intranasal insulin and insulin resistance, and highlights the importance of treatment duration and the brain regions targeted.


Subject(s)
Aging/physiology , Insulin Aspart/administration & dosage , Memory Disorders/drug therapy , Receptor, Insulin/metabolism , Administration, Intranasal , Animals , Gene Expression , Hippocampus/metabolism , Insulin Aspart/genetics , Insulin Aspart/pharmacology , Male , Maze Learning , Models, Animal , Rats , Rats, Inbred F344
9.
Melanoma Res ; 30(2): 147-158, 2020 04.
Article in English | MEDLINE | ID: mdl-31205227

ABSTRACT

Therapeutic activation of macrophage phagocytosis has the ability to restrain tumour growth through phagocytic clearance of tumour cells and activation of the adaptive immune response. Our objective for this study was to evaluate the effects of modulating pro- and anti-phagocytic pathways in malignant melanoma. In order to identify evolutionarily conserved mechanisms of resistance that may be important for melanoma cell survival, we utilized a multi-species approach and examined the phagocytosis of human, mouse, and dog melanoma cells. We observed that melanoma cells from all three species displayed unexpected resistance to phagocytosis that could not be fully mitigated by blockade of the 'don't eat me' signal CD47 or by chemotherapeutic enhancement of known 'eat me' signals. Additionally, CD47 blockade failed to promote anti-melanoma immune responses or tumour regression in vivo. This melanoma resistance to phagocytosis was not mediated by soluble factors, and it was unaffected by siRNA-mediated knockdown of 47 prospective 'don't eat me' signals or by CRISPR-Cas-mediated CD47 knockout. Unexpectedly, CD47 knockout also did not enhance phagocytosis of lymphoma cells, but it eliminated the pro-phagocytic effect of CD47 blockade, suggesting that the pro-phagocytic effects of CD47 blockade are due in part to Fc receptor engagement. From this study, we conclude that melanoma cells possess an evolutionarily conserved resistance to macrophage phagocytosis. Further investigation will be needed to overcome the mechanisms that mediate melanoma cell resistance to innate immunity.


Subject(s)
CD47 Antigen/metabolism , Melanoma/genetics , Phagocytosis/physiology , Animals , Cell Line, Tumor , Humans , Mice , Signal Transduction , Transfection , Up-Regulation
10.
Exp Neurol ; 313: 79-87, 2019 03.
Article in English | MEDLINE | ID: mdl-30576640

ABSTRACT

It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.


Subject(s)
Aging/physiology , Alzheimer Disease/physiopathology , Brain/physiology , Brain/physiopathology , Insulin Resistance/physiology , Insulin/physiology , Aged , Aged, 80 and over , Humans
11.
Reprod Toxicol ; 76: 84-92, 2018 03.
Article in English | MEDLINE | ID: mdl-29408587

ABSTRACT

Fetal alcohol spectrum disorders (FASD) describe neurodevelopmental deficits in children exposed to alcohol in utero. We hypothesized that gestational alcohol significantly alters fetal brain regional protein signature. Pregnant rats were binge-treated with alcohol or pair-fed and nutritionally-controlled. Mass spectrometry identified 1806, 2077, and 1456 quantifiable proteins in the fetal hippocampus, cortex, and cerebellum, respectively. A stronger effect of alcohol exposure on the hippocampal proteome was noted: over 600 hippocampal proteins were significantly (P < .05) altered, including annexin A2, nucleobindin-1, and glypican-4, regulators of cellular growth and developmental morphogenesis. In the cerebellum, cadherin-13, reticulocalbin-2, and ankyrin-2 (axonal growth regulators) were significantly (P < .05) altered; altered cortical proteins were involved in autophagy (endophilin-B1, synaptotagmin-1). Ingenuity analysis identified proteins involved in protein homeostasis, oxidative stress, mitochondrial dysfunction, and mTOR as major pathways in the cortex and hippocampus significantly (P < .05) affected by alcohol. Thus, neurodevelopmental protein changes may directly relate to FASD neuropathology.


Subject(s)
Brain/drug effects , Ethanol/toxicity , Fetal Alcohol Spectrum Disorders/etiology , Prenatal Exposure Delayed Effects/chemically induced , Proteome/metabolism , Animals , Brain/embryology , Brain/metabolism , Disease Models, Animal , Female , Fetal Alcohol Spectrum Disorders/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats, Sprague-Dawley
12.
Neuroscience ; 364: 130-142, 2017 Nov 19.
Article in English | MEDLINE | ID: mdl-28939258

ABSTRACT

Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic.


Subject(s)
Aging/metabolism , Calcium/metabolism , Hippocampus/metabolism , Insulin/metabolism , Insulin/pharmacology , Neurons/metabolism , Signal Transduction , Animals , Cells, Cultured , Insulin/administration & dosage , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
Alcohol Clin Exp Res ; 41(9): 1551-1558, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28722160

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) describe many of the well-known neurodevelopmental deficits afflicting children exposed to alcohol in utero. The effects of alcohol on the maternal-fetal interface, especially the placenta, have been less explored. We herein hypothesized that chronic binge alcohol exposure during pregnancy significantly alters the placental protein profile in a rat FASD model. METHODS: Pregnant rats were orogastrically treated daily with alcohol (4.5 g/kg, gestational day [GD] 5 to 10; 6.0 g/kg, GD 11 to 19) or 50% maltose dextrin (isocalorically matched pair-fed controls). On GD 20, placentae were collected, flash-frozen, and stored until tissues were homogenized. Protein lysates were denatured, reduced, captured on a 10-kDa spin filter, and digested. Peptides were eluted, reconstituted, and analyzed by a Q Exactive™ Hybrid Quadrupole-Orbitrap™ mass spectrometer. RESULTS: Mass spectrometry (MS) analysis identified 2,285 placental proteins based on normalized spectral counts and 2,000 proteins by intensity-based absolute quantification. Forty-five placental proteins were significantly (p < 0.05) altered by gestational alcohol exposure by both quantification approaches. These included proteins directly related to alcohol metabolism; specific isoforms of alcohol dehydrogenase and aldehyde dehydrogenase were up-regulated in the alcohol group. Ingenuity analysis identified ethanol degradation as the most significantly altered canonical pathway in placenta, and fetal/organ development as most altered function, with increased risk for metabolic, neurological, and cardiovascular diseases. Physiological roles of the significantly altered proteins were related to early pregnancy adaptations, implantation, gestational diseases, fetal organ development, neurodevelopment, and immune functions. CONCLUSIONS: We conclude that the placenta is a valuable organ not only to understand FASD etiology but it may also serve as a diagnostic tool to identify novel biomarkers for detecting the outcome of fetal alcohol exposure. Placental MS analysis can offer sophisticated insights into identifying alcohol metabolism-related enzymes and regulators of fetal development.


Subject(s)
Fetal Alcohol Spectrum Disorders/genetics , Placenta/metabolism , Pregnancy Proteins/genetics , Proteomics , Animals , Binge Drinking/genetics , Binge Drinking/metabolism , Central Nervous System Depressants/adverse effects , Central Nervous System Depressants/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Female , Mass Spectrometry , Pregnancy , Pregnancy Proteins/biosynthesis , Rats , Rats, Sprague-Dawley
14.
Biochem Biophys Res Commun ; 483(4): 981-987, 2017 02 19.
Article in English | MEDLINE | ID: mdl-27553276

ABSTRACT

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer's disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely, can alter neuronal communication and synaptic strength in positive ways, without necessarily killing neurons. Here, we focus on the evidence that calcium has a subtle and distinctive role in shaping and controlling synaptic events that underpin neuronal communication and that these subtle changes in aging or AD may contribute to cognitive decline. We emphasize that calcium imaging in dendritic components is ultimately necessary to directly test for the presence of age- or disease-associated alterations during periods of synaptic activation.


Subject(s)
Brain/physiology , Calcium/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Humans , Models, Biological
15.
J Gerontol A Biol Sci Med Sci ; 72(2): 189-197, 2017 02.
Article in English | MEDLINE | ID: mdl-27069097

ABSTRACT

Novel therapies have turned to delivering compounds to the brain using nasal sprays, bypassing the blood brain barrier, and enriching treatment options for brain aging and/or Alzheimer's disease. We conducted a series of in vivo experiments to test the impact of intranasal Apidra, a zinc-free insulin formulation, on the brain of young and aged F344 rats. Both single acute and repeated daily doses were compared to test the hypothesis that insulin could improve memory recall in aged memory-deficient animals. We quantified insulin signaling in different brain regions and at different times following delivery. We measured cerebral blood flow (CBF) using MRI and also characterized several brain metabolite levels using MR spectroscopy. We show that neither acute nor chronic Apidra improved memory or recall in young or aged animals. Within 2 hours of a single dose, increased insulin signaling was seen in ventral areas of the aged brains only. Although chronic Apidra was able to offset reduced CBF with aging, it also caused significant reductions in markers of neuronal integrity. Our data suggest that this zinc-free insulin formulation may actually hasten cognitive decline with age when used chronically.


Subject(s)
Brain/drug effects , Brain/metabolism , Cognition/drug effects , Insulin/analogs & derivatives , Signal Transduction/drug effects , Administration, Intranasal , Age Factors , Animals , Cerebrovascular Circulation , Insulin/administration & dosage , Insulin/pharmacology , Male , Rats , Rats, Inbred F344 , Zinc
16.
Alcohol ; 56: 59-64, 2016 11.
Article in English | MEDLINE | ID: mdl-27793545

ABSTRACT

We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus.


Subject(s)
Binge Drinking/physiopathology , Blood Pressure/physiology , Ethanol/toxicity , Uterine Artery/physiopathology , Vasoconstriction/physiology , Animals , Binge Drinking/complications , Ethanol/administration & dosage , Female , Organ Culture Techniques , Pregnancy , Rats , Rats, Sprague-Dawley , Time Factors , Uterine Artery/drug effects , Vasoconstriction/drug effects
17.
Cancer Immunol Res ; 4(12): 1072-1087, 2016 12.
Article in English | MEDLINE | ID: mdl-27856424

ABSTRACT

Cancer immunotherapies hold much promise, but their potential in veterinary settings has not yet been fully appreciated. Canine lymphomas are among the most common tumors of dogs and bear remarkable similarity to human disease. In this study, we examined the combination of CD47 blockade with anti-CD20 passive immunotherapy for canine lymphoma. The CD47/SIRPα axis is an immune checkpoint that regulates macrophage activation. In humans, CD47 is expressed on cancer cells and enables evasion from phagocytosis. CD47-blocking therapies are now under investigation in clinical trials for a variety of human cancers. We found the canine CD47/SIRPα axis to be conserved biochemically and functionally. We identified high-affinity SIRPα variants that antagonize canine CD47 and stimulate phagocytosis of canine cancer cells in vitro When tested as Fc fusion proteins, these therapeutic agents exhibited single-agent efficacy in a mouse xenograft model of canine lymphoma. As robust synergy between CD47 blockade and tumor-specific antibodies has been demonstrated for human cancer, we evaluated the combination of CD47 blockade with 1E4-cIgGB, a canine-specific antibody to CD20. 1E4-cIgGB could elicit a therapeutic response against canine lymphoma in vivo as a single agent. However, augmented responses were observed when combined with CD47-blocking therapies, resulting in synergy in vitro and in vivo and eliciting cures in 100% of mice bearing canine lymphoma. Our findings support further testing of CD47-blocking therapies alone and in combination with CD20 antibodies in the veterinary setting. Cancer Immunol Res; 4(12); 1072-87. ©2016 AACR.


Subject(s)
Antigens, CD20/immunology , CD47 Antigen/immunology , Immunotherapy , Lymphoma, Large B-Cell, Diffuse/therapy , Animals , Cell Line, Tumor , Dogs , Female , Immunoglobulin G/therapeutic use , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/veterinary , Macrophages/immunology , Male , Mice , Phagocytosis , Xenograft Model Antitumor Assays
18.
J Pain ; 17(3): 359-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26687453

ABSTRACT

UNLABELLED: Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE: To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.


Subject(s)
Analgesics/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Hyperalgesia/prevention & control , Posterior Horn Cells/drug effects , Thiazolidinediones/pharmacology , Administration, Oral , Animals , Central Nervous System Sensitization/drug effects , Central Nervous System Sensitization/physiology , Cold Temperature , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2 , Diabetic Neuropathies/physiopathology , Drug Evaluation, Preclinical , Extracellular Signal-Regulated MAP Kinases/metabolism , Hot Temperature , Hyperalgesia/physiopathology , Male , Nociceptive Pain/drug therapy , Nociceptive Pain/physiopathology , Phosphorylation , Pioglitazone , Posterior Horn Cells/physiology , Rats, Zucker , Touch
19.
J Gerontol A Biol Sci Med Sci ; 71(1): 30-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25659889

ABSTRACT

Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.


Subject(s)
Aging , Brain , Cellular Senescence/physiology , Cognition , Insulin Detemir , Insulin Lispro , Administration, Intranasal , Aging/metabolism , Aging/psychology , Animals , Brain/metabolism , Brain/physiopathology , Cellular Senescence/drug effects , Cognition/drug effects , Cognition/physiology , Cognition Disorders/metabolism , Electrophysiological Phenomena/drug effects , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Insulin Detemir/administration & dosage , Insulin Detemir/metabolism , Insulin Lispro/administration & dosage , Insulin Lispro/metabolism , Insulin Resistance , Memory/drug effects , Rats , Treatment Outcome
20.
Toxicol Sci ; 147(1): 127-39, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26048654

ABSTRACT

Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%-3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%-0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1ß, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86(+)GL-7(+) B cells, CD80(+)CD86(+) dendritic cells, GATA-3(+)OX-40(+)IL-4(+)IL-13(+) Th2 cells and IL-17 A(+) CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1ß expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses.


Subject(s)
Anti-Infective Agents, Local/toxicity , Cytokines/biosynthesis , Dermatitis, Allergic Contact/pathology , Stromal Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Triclosan/toxicity , Adaptive Immunity/drug effects , Administration, Topical , Animals , Dermatitis, Allergic Contact/immunology , Humans , In Vitro Techniques , Lymph Nodes/drug effects , Mice , Mice, Inbred BALB C , Stromal Cells/drug effects , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL