Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 13(2)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562341

ABSTRACT

Pre-clinical studies have demonstrated that tart cherries, rich in hydroxycinnamic acids and anthocyanins, protect against age-related and inflammation-induced bone loss. This study examined how daily consumption of Montmorency tart cherry juice (TC) alters biomarkers of bone metabolism in older women. Healthy women, aged 65-80 years (n = 27), were randomly assigned to consume ~240 mL (8 fl. oz.) of juice once (TC1X) or twice (TC2X) per day for 90 d. Dual-energy x-ray absorptiometry (DXA) scans were performed to determine bone density at baseline, and pre- and post-treatment serum biomarkers of bone formation and resorption, vitamin D, inflammation, and oxidative stress were assessed. Irrespective of osteoporosis risk, the bone resorption marker, tartrate resistant acid phosphatase type 5b, was significantly reduced with the TC2X dose compared to baseline, but not with the TC1X dose. In terms of indicators of bone formation and turnover, neither serum bone-specific alkaline phosphatase nor osteocalcin were altered. No changes in thiobarbituric acid reactive substances or high sensitivity C-reactive protein were observed in response to either TC1X or TC2X. We conclude that short-term supplementation with the higher dose of tart cherry juice decreased bone resorption from baseline without altering bone formation and turnover biomarkers in this cohort.


Subject(s)
Bone Resorption/prevention & control , Dietary Supplements , Fruit and Vegetable Juices , Osteoporosis/prevention & control , Prunus avium/chemistry , Age Factors , Aged , Aged, 80 and over , Aging , Alkaline Phosphatase/blood , Anthocyanins/analysis , Biomarkers/blood , Bone Density , Bone Remodeling , Bone Resorption/diagnosis , Coumaric Acids/analysis , Female , Fruit and Vegetable Juices/analysis , Humans , Inflammation , Osteocalcin/blood , Osteogenesis , Osteoporosis/diagnosis , Oxidative Stress
2.
Liver Int ; 41(5): 894-904, 2021 05.
Article in English | MEDLINE | ID: mdl-33506572

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease that is becoming more prevalent in concert with obesity and poor lifestyle habits. Although NAFLD is treatable via lifestyle modification in early stages, more advanced liver pathologies (eg non-alcoholic steatohepatitis [NASH]) are harder to reverse. There is no Food and Drug Administration approved pharmacological treatment for NAFLD, and little research has been done to identify compounds that target key NAFLD mechanisms. Bile acids and bile acid receptors have been implicated in NAFLD pathogenesis and modulating bile acids and bile acid receptors has recently been targeted as a therapeutic treatment option for NAFLD. Fibroblast growth factor 19 (FGF19), a nutritionally regulated post-prandial hormone, is a chief regulator of bile acid metabolism and an important player in lipid and carbohydrate metabolism, including key mechanisms of NAFLD pathogenesis. In this review, we discuss recent findings related to FGF19-regulated processes involved in the pathogenesis of NAFLD. We summarize known and conjectural frameworks and limitations for the clinical application of FGF19-targeted therapies as they relate to NAFLD.


Subject(s)
Fibroblast Growth Factors , Non-alcoholic Fatty Liver Disease , Bile Acids and Salts/metabolism , Fibroblast Growth Factors/metabolism , Humans , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism
3.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G512-G518, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32845171

ABSTRACT

Regular aerobic exercise has numerous benefits on human physiology, arguably by serving as a hormetic stressor resulting in positive adaptations over time. It has long been known that aerobic exercise at a variety of intensities and durations induces intestinal permeability, which is a feature of many pathologies of the gastrointestinal tract and metabolic diseases. Given the health benefits of exercise, it seems unlikely that intestinal permeability induced by exercise outweighs the positive adaptations. In fact, a growing body of evidence suggests adoption of exercise regimens lasting weeks to months improves indicators of intestinal permeability. In this brief review, we summarize factors contributing to acute exercise-induced intestinal permeability and what is known about chronic exercise and the gut barrier. Additionally, we outline known and theoretical adaptations of the gut to chronic exercise that may explain emerging reports that exercise improves markers of gut integrity.


Subject(s)
Exercise/physiology , Hormesis/physiology , Intestines/physiology , Cardiovascular System , Gastrointestinal Absorption/physiology , Gastrointestinal Microbiome/physiology , Humans , Immunity/physiology , Intestinal Mucosa/physiology , Permeability , Splanchnic Circulation/physiology , Thermotolerance/physiology
4.
J Agric Food Chem ; 67(51): 14027-14037, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31771323

ABSTRACT

Wheat consumption has declined amid growing concerns about gluten-sensitivity. To determine if genetic manipulation of wheat contributes to systemic and localized gut inflammation, we compared the effects of the modern variety Gallagher and a blend of two heirloom varieties, Turkey and Kharkof, on measures of gut inflammation, structural characteristics, and barrier integrity under normal and Western diet (WD) conditions in C57BL/6 mice. Indicators of gut inflammation, including lymphocyte infiltration and cytokine expression, were largely unaffected by WD or wheat, although WD elevated interferon-γ (Ifng) and heirloom varieties modestly reduced interleukin-17 (Il17) in the context of WD. WD negatively affected jejunal villi structure, while the modern variety improved villi structure in the ileum. Relative mRNA and tight junction proteins and serum lipopolysaccharide binding protein were unaltered by WD or wheat. These findings indicate that the modern variety did not compromise barrier function or contribute to gut inflammation compared to its heirloom predecessor.


Subject(s)
Gastrointestinal Tract/metabolism , Triticum/metabolism , Animals , Cytokines/genetics , Cytokines/immunology , Gastrointestinal Tract/immunology , Ileum/immunology , Ileum/metabolism , Interferon-gamma , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Triticum/classification
SELECTION OF CITATIONS
SEARCH DETAIL