Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 30(1-2): 45-60, 2024 01.
Article in English | MEDLINE | ID: mdl-37897061

ABSTRACT

Rotator cuff tear is a significant problem that leads to poor clinical outcomes due to muscle degeneration after injury. The objective of this study was to synergistically increase the number of proregenerative cells recruited to injure rotator cuff muscle through a novel dual treatment system, consisting of a bone marrow mobilizing agent (VPC01091), hypothesized to "push" prohealing cells into the blood, and localized delivery of stromal cell-derived factor-1α (SDF-1α), to "pull" the cells to the injury site. Immediately after rotator cuff tendon injury in rat, the mobilizing agent was delivered systemically, and SDF-1α-loaded heparin-based microparticles were injected into the supraspinatus muscle. Regenerative and degenerative changes to supraspinatus muscle and the presence of inflammatory/immune cells, mesenchymal stem cells (MSCs), and satellite cells were assessed via flow cytometry and histology for up to 21 days. After dual treatment, significantly more MSCs (31.9 ± 8.0% single cells) and T lymphocytes (6.7 ± 4.3 per 20 × field of view) were observed in supraspinatus muscle 7 days after injury and treatment compared to injury alone (14.4 ± 6.5% single cells, 1.2 ± 0.7 per 20 × field of view), in addition to an elevated M2:M1 macrophage ratio (3.0 ± 0.5), an indicator of a proregenerative environment. These proregenerative cellular changes were accompanied by increased nascent fiber formation (indicated by embryonic myosin heavy chain staining) at day 7 compared to SDF-1α treatment alone, suggesting that this method may be a promising strategy to influence the early cellular response in muscle and promote a proregenerative microenvironment to increase muscle healing after severe rotator cuff tear.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Rats , Animals , Rotator Cuff/pathology , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/pathology , Chemokine CXCL12/pharmacology , Bone Marrow , Muscle Fibers, Skeletal
2.
Ann Biomed Eng ; 49(12): 3698-3710, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34766224

ABSTRACT

Surgical repair of severe rotator cuff tear often results in retear due to unaddressed muscle degeneration. The objective of this study was to test the regenerative potential of micronized dehydrated Human Amnion/Chorion Membrane (dHACM), in a clinically relevant delayed reattachment model of rotator cuff repair. Micronized dHACM was injected into rat supraspinatus muscle during tendon re-attachment surgery, three weeks after original tendon injury. One week after material injection, inflammatory and mesenchymal stem cell infiltration into supraspinatus muscles was assessed via flow cytometry. Histological methods were utilized to assess structural and regenerative changes in muscle one and three weeks after material injection. Micronized dHACM injection resulted in increased M1-like macrophages (17.1 [Formula: see text] fold change over contralateral controls) and regenerating muscle fibers (4.3% vs 1.7% in saline treated muscles) one week after injection compared to saline treated muscles. Tendon reattachment itself exhibited intrinsic healing in this model, demonstrated by a general return of muscle weight and reduced fibrosis. Our results indicate that injection of micronized dHACM may initiate an inflammatory response in degenerated muscle that promotes early muscle regeneration, and that our animal model may be a suitable platform for studying treatments in muscle at early timepoints, before intrinsic healing occurs.


Subject(s)
Amnion , Chorion , Rotator Cuff Injuries/physiopathology , Rotator Cuff/physiopathology , Wound Healing/physiology , Animals , Injections, Intra-Articular , Male , Models, Animal , Muscle Fibers, Skeletal/physiology , Rats, Sprague-Dawley , Rotator Cuff/pathology , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...