Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38248963

ABSTRACT

Plant defensins are a large family of small cationic proteins with diverse functions and mechanisms of action, most of which assert antifungal activity against a broad spectrum of fungi. The partial mechanism of action has been resolved for a small number of members of plant defensins, and studies have revealed that many act by more than one mechanism. The plant defensin Ppdef1 has a unique sequence and long loop 5 with fungicidal activity against a range of human fungal pathogens, but little is known about its mechanism of action. We screened the S. cerevisiae non-essential gene deletion library and identified the involvement of the mitochondria in the mechanism of action of Ppdef1. Further analysis revealed that the hyperpolarisation of the mitochondrial membrane potential (MMP) activates ROS production, vacuolar fusion and cell death and is an important step in the mechanism of action of Ppdef1, and it is likely that a similar mechanism acts in Trichophyton rubrum.

2.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998916

ABSTRACT

Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

3.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871210

ABSTRACT

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Subject(s)
Bacillus thuringiensis , Ferns , Insecticides , Tracheophyta , Animals , Insecticides/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Tracheophyta/metabolism , Zea mays/metabolism
4.
J Fungi (Basel) ; 9(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37233218

ABSTRACT

Fusarium graminearum (F. graminearum) is a filamentous fungus that infects cereals such as corn, wheat, and barley, with serious impact on yield as well as quality when the grain is contaminated with mycotoxins. Despite the huge impact of F. graminearum on food security and mammalian health, the mechanisms used by F. graminearum to export virulence factors during infection are not fully understood and may involve non-classical secretory pathways. Extracellular vesicles (EVs) are lipid-bound compartments produced by cells of all kingdoms that transport several classes of macromolecules and are implicated in cell-cell communication. EVs produced by human fungal pathogens carry cargo that facilitate infection, leading us to ask whether plant fungal pathogens also deliver molecules that increase virulence via EVs. We examined the metabolome of the EVs produced by F. graminearum to determine whether they carry small molecules that could modulate plant-pathogen interactions. We discovered that EVs from F. graminearum were produced in liquid medium-containing inducers of trichothecene production, but in lower quantities compared to other media. Nanoparticle tracking analysis and cryo-electron microscopy revealed that the EVs were morphologically similar to EVs from other organisms; hence, the EVs were metabolically profiled using LC-ESI-MS/MS. This analysis revealed that EVs carry 2,4-dihydroxybenzophenone (BP-1) and metabolites that have been suggested by others to have a role in host-pathogen interactions. BP-1 reduced the growth of F. graminearum in an in vitro assay, suggesting that F. graminearum might use EVs to limit metabolite self-toxicity.

5.
Microbiol Spectr ; 11(3): e0421922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039647

ABSTRACT

Scab, caused by the biotrophic fungal pathogen Venturia inaequalis, is the most economically important disease of apples. During infection, V. inaequalis colonizes the subcuticular host environment, where it develops specialized infection structures called runner hyphae and stromata. These structures are thought to be involved in nutrient acquisition and effector (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite their importance, very little is known about how these structures are differentiated. Likewise, nothing is known about how these structures are protected from host defenses or recognition by the host immune system. To better understand these processes, we first performed a glycosidic linkage analysis of sporulating tubular hyphae from V. inaequalis developed in culture. This analysis revealed that the V. inaequalis cell wall is mostly composed of glucans (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next, we used transcriptomics and confocal laser scanning microscopy to provide insights into the cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed that, during subcuticular host colonization, genes of V. inaequalis putatively associated with the biosynthesis of immunogenic carbohydrates, such as chitin and ß-1,6-glucan, are downregulated relative to growth in culture, while on the surface of runner hyphae and stromata, chitin is deacetylated to the less-immunogenic carbohydrate chitosan. These changes are anticipated to enable the subcuticular differentiation of runner hyphae and stromata by V. inaequalis, as well as to protect these structures from host defenses and recognition by the host immune system. IMPORTANCE Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular pathogens, which often cause latent asymptomatic infections, making them difficult to control. A key feature of these pathogens is their ability to differentiate specialized subcuticular infection structures that, to date, remain largely understudied. This is typified by Venturia inaequalis, which causes scab, the most economically important disease of apples. In this study, we show that, during subcuticular host colonization, V. inaequalis downregulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates, chitin and ß-1,6-glucan, and coats its subcuticular infection structures with a less-immunogenic carbohydrate, chitosan. These changes are anticipated to enable host colonization by V. inaequalis and provide a foundation for understanding subcuticular host colonization by other plant-pathogenic fungi. Such an understanding is important, as it may inform the development of novel control strategies against subcuticular plant-pathogenic fungi.


Subject(s)
Ascomycota , Chitosan , Malus , Malus/microbiology , Ascomycota/genetics , Cell Wall , Plant Diseases/microbiology
6.
Nat Commun ; 14(1): 1163, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859523

ABSTRACT

Autotransporters (ATs) are a large family of bacterial secreted and outer membrane proteins that encompass a wide range of enzymatic activities frequently associated with pathogenic phenotypes. We present the structural and functional characterisation of a subtilase autotransporter, Ssp, from the opportunistic pathogen Serratia marcescens. Although the structures of subtilases have been well documented, this subtilisin-like protein is associated with a 248 residue ß-helix and itself includes three finger-like protrusions around its active site involved in substrate interactions. We further reveal that the activity of the subtilase AT is required for entry into epithelial cells as well as causing cellular toxicity. The Ssp structure not only provides details about the subtilase ATs, but also reveals a common framework and function to more distantly related ATs. As such these findings also represent a significant step forward toward understanding the molecular mechanisms underlying the functional divergence in the large AT superfamily.


Subject(s)
Antineoplastic Agents , Subtilisin , Type V Secretion Systems , Biological Transport
7.
Phytochemistry ; 209: 113618, 2023 May.
Article in English | MEDLINE | ID: mdl-36828099

ABSTRACT

The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.


Subject(s)
Defensins , Peptides , Defensins/chemistry
8.
J Fungi (Basel) ; 7(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34829264

ABSTRACT

Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals.

9.
Subcell Biochem ; 97: 151-177, 2021.
Article in English | MEDLINE | ID: mdl-33779917

ABSTRACT

Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.


Subject(s)
Extracellular Vesicles , Fungal Proteins , Animals , Cell Wall , Fungi , Host-Pathogen Interactions , Humans
10.
Proteomics ; 21(13-14): e2000240, 2021 07.
Article in English | MEDLINE | ID: mdl-33609009

ABSTRACT

Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.


Subject(s)
Extracellular Vesicles , Fusarium , Animals , Chromatography, Gel , Fungi , Humans , Plant Diseases , Proteomics
11.
Front Plant Sci ; 11: 1227, 2020.
Article in English | MEDLINE | ID: mdl-32922418

ABSTRACT

Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.

12.
J Fungi (Basel) ; 6(3)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847065

ABSTRACT

Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46-50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs). Using these initial HRD sequences as a query, a search of the available sequence databases identified over 750 HRDs in solanaceous plants and 20 in brassicas. Histidine residues are known to contribute to metal binding functions in proteins leading to the hypothesis that HRDs would have metal binding properties. A selection of the HRD sequences were recombinantly expressed and purified and their antifungal and metal binding activity was characterized. Of the four HRDs that were successfully expressed all displayed some level of metal binding and two of four had antifungal activity. Structural characterization of the other HRDs identified a novel pattern of disulfide linkages in one of the HRDs that is predicted to also occur in HRDs with similar cysteine spacing. Metal binding by HRDs represents a specialization of the plant defensin fold outside of antifungal activity.

13.
J Extracell Vesicles ; 9(1): 1750810, 2020.
Article in English | MEDLINE | ID: mdl-32363014

ABSTRACT

Background: Fungal extracellular vesicles (EVs) have been implicated in host-pathogen and pathogen-pathogen communication in some fungal diseases. In depth research into fungal EVs has been hindered by the lack of specific protein markers such as those found in mammalian EVs that have enabled sophisticated isolation and analysis techniques. Despite their role in fungal EV biogenesis, ESCRT proteins such as Vps23 (Tsg101) and Bro1 (ALIX) are not present as fungal EV cargo. Furthermore, tetraspanin homologs are yet to be identified in many fungi including the model yeast S. cerevisiae. Objective: We performed de novo identification of EV protein markers for the major human fungal pathogen Candida albicans with adherence to MISEV2018 guidelines. Materials and methods: EVs were isolated by differential ultracentrifugation from DAY286, ATCC90028 and ATCC10231 yeast cells, as well as DAY286 biofilms. Whole cell lysates (WCL) were also obtained from the EV-releasing cells. Label-free quantitative proteomics was performed to determine the set of proteins consistently enriched in EVs compared to WCL. Results: 47 proteins were consistently enriched in C. albicans EVs. We refined these to 22 putative C. albicans EV protein markers including the claudin-like Sur7 family (Pfam: PF06687) proteins Sur7 and Evp1 (orf19.6741). A complementary set of 62 EV depleted proteins was selected as potential negative markers. Conclusions: The marker proteins for C. albicans EVs identified in this study will be useful tools for studies on EV biogenesis and cargo loading in C. albicans and potentially other fungal species and will also assist in elucidating the role of EVs in C. albicans pathogenesis. Many of the proteins identified as putative markers are fungal specific proteins indicating that the pathways of EV biogenesis and cargo loading may be specific to fungi, and that assumptions made based on studies in mammalian cells could be misleading. Abbreviations: A1 - ATCC10231; A9 - ATCC90028; DAY B - DAY286 biofilm; DAY Y - DAY286 yeast; EV - extracellular vesicle; Evp1 - extracellular vesicle protein 1 (orf19.6741); GO - gene ontology; Log2(FC) - log2(fold change); MCC - membrane compartment of Can1; MDS - multidimensional scaling; MISEV - minimal information for studies of EVs; sEVs - small EVs; SP - signal peptide; TEMs - tetraspanin enriched microdomains; TM - transmembrane; VDM - vesicle-depleted medium; WCL - whole cell lysate.

14.
ACS Chem Biol ; 15(4): 962-969, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32203656

ABSTRACT

Cyclotides are a class of cyclic disulfide-rich peptides found in plants that have been adopted as a molecular scaffold for pharmaceutical applications due to their inherent stability and ability to penetrate cell membranes. For research purposes, they are usually produced and cyclized synthetically, but there are concerns around the cost and environmental impact of large-scale chemical synthesis. One strategy to improve this is to combine a recombinant production system with native enzyme-mediated cyclization. Asparaginyl endopeptidases (AEPs) are enzymes that can act as peptide ligases in certain plants to facilitate cyclotide maturation. One of these ligases, OaAEP1b, originates from the cyclotide-producing plant, Oldenlandia affinis, and can be produced recombinantly for use in vitro as an alternative to chemical cyclization of recombinant substrates. However, not all engineered cyclotides are compatible with AEP-mediated cyclization because new pharmaceutical epitopes often replace the most flexible region of the peptide, where the native cyclization site is located. Here we redesign a popular cyclotide grafting scaffold, MCoTI-II, to incorporate an AEP cyclization site located away from the usual grafting region. We demonstrate the incorporation of a bioactive peptide sequence in the most flexible region of MCoTI-II while maintaining AEP compatibility, where the two were previously mutually exclusive. We anticipate that our AEP-compatible scaffold, based on the most popular cyclotide for pharmaceutical applications, will be useful in designing bioactive cyclotides that are compatible with AEP-mediated cyclization and will therefore open up the possibility of larger scale enzyme-mediated production of recombinant or synthetic cyclotides alike.


Subject(s)
Cyclotides/chemistry , Cysteine Endopeptidases/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Cyclization , Cyclotides/chemical synthesis , Cyclotides/genetics , Cysteine Endopeptidases/genetics , Escherichia coli/genetics , Oldenlandia/enzymology , Plant Proteins/chemical synthesis , Plant Proteins/genetics , Protein Engineering
15.
Nat Rev Drug Discov ; 19(5): 311-332, 2020 05.
Article in English | MEDLINE | ID: mdl-32107480

ABSTRACT

Cationic host defence peptides (CHDP), also known as antimicrobial peptides, are naturally occurring peptides that can combat infections through their direct microbicidal properties and/or by influencing the host's immune responses. The unique ability of CHDP to control infections as well as resolve harmful inflammation has generated interest in harnessing the properties of these peptides to develop new therapies for infectious diseases, chronic inflammatory disorders and wound healing. Various strategies have been used to design synthetic optimized peptides, with negligible toxicity. Here, we focus on the progress made in understanding the scope of functions of CHDP and the emerging potential clinical applications of CHDP-based therapies.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Communicable Diseases/drug therapy , Inflammation/drug therapy , Animals , Humans
16.
Biomed Opt Express ; 10(10): 4964-4974, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31646022

ABSTRACT

Characterising and understanding the mechanisms involved in cell death are especially important to combating threats to human health, particularly for the study of antimicrobial peptides and their effectiveness against pathogenic fungi. However, imaging these processes often relies on the use of synthetic molecules which bind to specific cellular targets to produce contrast. Here we study yeast cell death, induced by the anti-fungal peptide, NaD1. By treating yeast as a model organism we aim to understand anti-fungal cell death processes without relying on sample modification. Using a quantitative phase imaging technique, ptychography, we were able to produce label free images of yeast cells during death and use them to investigate the mode of action of NaD1. Using this technique we were able to identify a significant phase shift which provided a clear signature of yeast cell death. Additionally, ptychography identifies cell death much earlier than a comparative fluorescence study, providing new insights into the cellular changes that occur during cell death. The results indicate ptychography has great potential as a means of providing additional information about cellular processes which otherwise may be masked by indirect labelling approaches.

17.
Article in English | MEDLINE | ID: mdl-31451498

ABSTRACT

Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.


Subject(s)
Antifungal Agents/pharmacology , Defensins/genetics , Genes, Fungal/genetics , Plants/microbiology , Saccharomyces cerevisiae/genetics , Sequence Deletion/genetics , Amino Acid Sequence , Fusarium/genetics , Gene Deletion , Gene Library
18.
Ticks Tick Borne Dis ; 10(6): 101269, 2019 10.
Article in English | MEDLINE | ID: mdl-31445875

ABSTRACT

Tick innate immunity involves humoral and cellular responses. Among the humoral effector molecules in ticks are the defensins which are a family of small peptides with a conserved γ-core motif that is crucial for their antimicrobial activity. Defensin families have been identified in several hard and soft tick species. However, little is known about the presence and antimicrobial activity of defensins from the Australian paralysis tick Ixodes holocyclus. In this study the I. holocyclus transcriptome was searched for the presence of defensins. Unique and non-redundant defensin sequences were identified and designated as holosins 1 - 5. The antimicrobial activity of holosins 2 and 3 and of the predicted γ-cores of holosins 1-4 (HoloTickCores 1-4), was assessed using Gram-negative and Gram-positive bacteria as well as the fungus Fusarium graminearum and the yeast Candida albicans. All holosins had molecular features that are conserved in other tick defensins. Furthermore holosins 2 and 3 were very active against the Gram-positive bacteria Staphylococcus aureus and Listeria grayi. Holosins 2 and 3 were also active against F. graminearum and C. albicans and 5 µM of peptide abrogate the growth of these microorganisms. The activity of the synthetic γ-cores was lower than that of the mature defensins apart from HoloTickCore 2 which had activity comparable to mature holosin 2 against the Gram-negative bacterium Escherichia coli. This study reveals the presence of a multigene defensin family in I. holocyclus with wide antimicrobial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Defensins/genetics , Defensins/immunology , Ixodes/genetics , Ixodes/immunology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Australia , Candida albicans/drug effects , Defensins/chemistry , Fusarium/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Phylogeny , Sequence Alignment , Transcriptome
19.
Sci Rep ; 9(1): 10820, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346249

ABSTRACT

Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These "ligase-type" AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them "canonical AEP ligases" to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).


Subject(s)
Cysteine Endopeptidases/metabolism , Intrinsically Disordered Proteins/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Antigens, Protozoan/metabolism , Cyclization , Models, Molecular , Protein Engineering , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism
20.
Front Plant Sci ; 10: 602, 2019.
Article in English | MEDLINE | ID: mdl-31156672

ABSTRACT

The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs. We show that transient expression in Nicotiana benthamiana allows for rapid peptide production, provided that asparaginyl endopeptidase enzymes with peptide-ligase functionality are co-expressed with the substrate peptide gene. Without co-expression, no target cyclic peptides are detected, reflecting rapid in planta degradation of non-cyclized substrate. We test this recombinant production system by expressing a SFTI-1-based therapeutic candidate that displays potent and selective inhibition of human plasmin. By using an innovative multi-unit peptide expression cassette, we show that in planta yields reach ~60 µg/g dry weight at 6 days post leaf infiltration. Using nuclear magnetic resonance structural analysis and functional in vitro assays, we demonstrate the equivalence of plant and synthetically derived plasmin inhibitor peptide. The methods and insights gained in this study provide opportunities for the large scale, cost effective production of SFTI-1-based therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...