Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Learn Mem ; 29(9): 302-311, 2022 09.
Article in English | MEDLINE | ID: mdl-36206392

ABSTRACT

The ubiquitin proteasome system (UPS) is a primary mechanism through which proteins are degraded in cells. UPS activity in the dorsal hippocampus (DH) is necessary for multiple types of memory, including object memory, in male rodents. However, sex differences in DH UPS activation after fear conditioning suggest that other forms of learning may also differentially regulate DH UPS activity in males and females. Here, we examined markers of UPS activity in the synaptic and cytoplasmic fractions of DH and medial prefrontal cortex (mPFC) tissue collected 1 h following object training. In males, training increased phosphorylation of proteasomal subunit Rpt6, 20S proteasome activity, and the amount of PSD-95 in the DH synaptic fraction, as well as proteasome activity in the mPFC synaptic fraction. In females, training did not affect measures of UPS or synaptic activity in the DH synaptic fraction or in either mPFC fraction but increased Rpt6 phosphorylation in the DH cytoplasmic fraction. Overall, training-induced UPS activity was greater in males than in females, greater in the DH than in the mPFC, and greater in synaptic fractions than in cytosol. These data suggest that object training drives sex-specific alterations in UPS activity across brain regions and subcellular compartments important for memory.


Subject(s)
Conditioning, Classical , Proteasome Endopeptidase Complex , Animals , Conditioning, Classical/physiology , Female , Hippocampus/physiology , Male , Mice , Prefrontal Cortex/physiology , Proteasome Endopeptidase Complex/metabolism , Sex Characteristics , Ubiquitin/metabolism
2.
Psychoneuroendocrinology ; 141: 105773, 2022 07.
Article in English | MEDLINE | ID: mdl-35490640

ABSTRACT

Hippocampal plasticity and memory are modulated by the potent estrogen 17ß-estradiol (E2). Research on the molecular mechanisms of hippocampal E2 signaling has uncovered multiple intracellular pathways that contribute to these effects, but few have questioned the role that extracellular signaling processes may play in E2 action. Modification of the extracellular matrix (ECM) by proteases like matrix metalloproteinase-9 (MMP-9) is critical for activity-dependent remodeling of synapses, and MMP-9 activity is required for hippocampal learning and memory. Yet little is known about the extent to which E2 regulates MMP-9 in the hippocampus, and the influence this interaction may have on hippocampal memory. Here, we examined the effects of hippocampal MMP-9 activity on E2-induced enhancement of spatial and object recognition memory consolidation. Post-training bilateral infusion of an MMP-9 inhibitor into the dorsal hippocampus of ovariectomized female mice blocked the enhancing effects of E2 on object placement and object recognition memory, supporting a role for MMP-9 in estrogenic regulation of memory consolidation. E2 also rapidly increased the activity of dorsal hippocampal MMP-9 without influencing its protein expression, providing further insight into hippocampal E2/MMP-9 interactions. Together, these results provide the first evidence that E2 regulates MMP-9 to modulate hippocampal memory and highlight the need to further study estrogenic regulation of extracellular modification.


Subject(s)
Memory Consolidation , Animals , Estradiol/metabolism , Estradiol/pharmacology , Female , Hippocampus/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL