Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
J Econ Entomol ; 117(2): 417-426, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38412361

ABSTRACT

The arthropod intestinal tract and other anatomical parts naturally carry microorganisms. Some of which are pathogens, secrete toxins, or carry transferable antibiotic-resistance genes. The risks associated with the production and consumption of edible arthropods are dependent on indigenous microbes, as well as microbes introduced during the processes of rearing. This mass arthropod production puts individual arthropods in close proximity, which increases the possibility of their exposure to antibiotic-resistant bacteria carried by bacteria from fellow insects, industry workers, or rearing hardware and substrates. The purpose of this study was to determine if the alimentary tract of the yellow mealworm provided an environment permitting horizontal gene transfer between bacteria. The effect of the concentration of bacterial exposure was also assessed. Antibiotic resistance gene transfer between marker Salmonella Lignières (Enterobacterales: Enterobacteriaceae) and Escherichia coli (Migula) (Enterobacterales: Enterobacteriaceae) introduced into the larval gut demonstrated that the nutrient-rich environment of the yellow mealworm gut provided favorable conditions for the transfer of antibiotic resistance genes. Conjugation frequencies were similar across inoculum concentrations; however, transconjugant production correlated positively to increased exposure concentration. The lowest concentration of bacterial exposure required enrichment to detect and thus may have been approaching a threshold level for the 2 bacteria to colocate within the expanse of the larval gut. While many factors can affect this transfer, the simple factor of the proximity of donor and recipient bacteria, as defined by the concentration of bacteria within the volume of the insect gut, likely primarily contributed to the efficiency of antibiotic gene transfer.


Subject(s)
Anti-Bacterial Agents , Tenebrio , Animals , Anti-Bacterial Agents/pharmacology , Tenebrio/genetics , Tenebrio/microbiology , Larva , Plasmids , Bacteria/genetics , Insecta/genetics , Drug Resistance, Microbial , Escherichia coli/genetics
2.
Pathogens ; 12(12)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38133276

ABSTRACT

Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.

3.
Pathogens ; 12(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38133337

ABSTRACT

Concern exists that the continued use of antibiotics in animal feeds may lead to an increased prevalence of resistant bacteria within the host animal's gastrointestinal tract. To evaluate the effect of chlortetracycline on the persistence of Salmonella enterica serotype Typhimurium within a diverse population of porcine cecal bacteria, we cultured a mixed population of cecal bacteria without or with added chlortetracycline. When grown at a 24 h vessel turnover rate, chlortetracycline-susceptible S. Typhimurium exhibited more than 2.5 times faster (p < 0.05) disappearance rates than theoretically expected (0.301 log10 colony-forming unit/mL per day) but did not differ whether treated or not with 55 mg of chlortetracycline/L. Chlortetracycline-resistant S. Typhimurium was not recovered from any of these cultures. When the mixed cultures were inoculated with a chlortetracycline-resistant S. Typhimurium, rates of disappearance were nearly two times slower (p < 0.05) than those observed earlier with chlortetracycline-susceptible S. Typhimurium, and cultures persisted at >2 log10 colony-forming units/mL for up to 14 days of treatment with 110 mg of chlortetracycline/L. Under the conditions of this study, chlortetracycline-resistant S. Typhimurium was competitively enabled to persist longer within the mixed populations of porcine gut bacteria than chlortetracycline-susceptible S. Typhimurium, regardless of the presence or absence of added chlortetracycline.

4.
Microorganisms ; 11(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37110262

ABSTRACT

Poultry litter is a valuable crude protein feedstuff for ruminants, but it must be treated to kill pathogens before feeding. Composting effectively kills pathogens, but it risks losing ammonia to volatilization or leaching during degradation of uric acid and urea. Hops bitter acids also exert antimicrobial activity against certain pathogenic and nitrogen-degrading microbes. Consequently, the present studies were conducted to test if adding bitter acid-rich hop preparations to simulated poultry litter composts may improve nitrogen retention while simultaneously improving pathogen killing. Results from an initial study, testing doses of Chinook or Galena hops preparations designed to each deliver 79 ppm hops ß-acid, revealed that, after nine days simulated composting of wood chip litter, ammonia concentrations were 14% lower (p < 0.05) in Chinook-treated composts than untreated composts (13.4 ± 1.06 µmol/g). Conversely, urea concentrations were 55% lower (p < 0.05) in Galena-treated than untreated composts (6.2 ± 1.72 µmol/g). Uric acid accumulations were unaffected by hops treatments in this study but were higher (p < 0.05) after three days than after zero, six, or nine days of composting. In follow-up studies, Chinook or Galena hops treatments (delivering 2042 or 6126 ppm of ß-acid, respectively) for simulated composts (14 days) of wood chip litter alone or mixed 3:1 with ground Bluestem hay (Andropogon gerardii) revealed that these higher dosages had little effect on ammonia, urea, or uric acid accumulations when compared to untreated composts. Volatile fatty acid accumulations measured in these later studies were affected by the hops treatments, with butyrate accumulations being lower after 14 days in hops-treated composts than in untreated compost. In all studies, beneficial effects of Galena or Chinook hops treatments were not observed on the antimicrobial activity of the simulated composts, with composting by itself decreasing (p < 0.05) counts of select microbial populations by more than 2.5 log10 colony forming units/g compost dry matter. Thus, while hops treatments had little effect on pathogen control or nitrogen retention within the composted litter, they did lessen accumulations of butyrate, which may prevent adverse effects of this fatty acid on palatability of litter fed to ruminants.

5.
J Environ Sci Health B ; 58(1): 45-50, 2023.
Article in English | MEDLINE | ID: mdl-36661390

ABSTRACT

Medium chain fatty acid (MCFA) treatment (0.75% C6, hexanoic; C8, octanoic; C10, decanoic; or equal proportion mixtures of C6:C8:C10:C12 or C8:C10/g; C12 = dodecanoic acid) of aerobically-exposed corn silage on spoilage and pathogenic microbes and rumen fermentation were evaluated in vitro. After 24 h aerobic incubation (37 °C), microbial enumeration revealed 3 log10 colony-forming units (CFU)/g fewer (P = 0.03) wild-type yeast and molds in C8:C10-treated silage than controls. Compared with controls, wild-type enterococci decreased (P < 0.01) in all treatments except the C6:C8:C10:C12 mixture; lactic acid bacteria were decreased (P < 0.01) in all treatments except C6 and the C6:C8:C10:C12 mixture. Total aerobes and inoculated Staphylococcus aureus or Listeria monocytogenes were unaffected by treatment (P > 0.05). Anaerobic incubation (24 h at 39 °C) of ruminal fluid (10 mL) with 0.02 g overnight air-exposed MCFA-treated corn silage revealed higher hydrogen accumulations (P = 0.03) with the C8:C10 mixture than controls. Methane, acetate, propionate, butyrate, or estimates of fermented hexose were unaffected. Acetate:propionate ratios were higher (P < 0.01) and fermentation efficiencies were marginally lower (P < 0.01) with C8- or C8:C10-treated silage than controls. Further research is warranted to optimize treatments to target unwanted microbes without adversely affecting beneficial microbes.


Subject(s)
Rumen , Silage , Animals , Silage/analysis , Silage/microbiology , Rumen/microbiology , Zea mays , Propionates/metabolism , Fermentation , Fatty Acids/metabolism , Diet
6.
Front Microbiol ; 14: 1327841, 2023.
Article in English | MEDLINE | ID: mdl-38449879

ABSTRACT

Background: Fundamental investigations into the location, load, and persistence of microbes, whether beneficial or detrimental, are scarce. Many questions about the retention and survival of microbes on various surfaces, as well as the load necessary for spread, exist. To answer these questions, we must know more about where to find various microbes and in what concentrations, the composition of the microbial communities, and the extent of dissemination between various elements. This study investigated the diversity, composition, and relative abundance of the communities associated with manure, lagoons, troughs, house flies, and stable flies present at a dairy, implementing two different free-stall management systems: flow-through and cross-vent. Shotgun metagenomics at the community level was used to compare the microbiomes within the dairy, allowing confident interpretation at the species level. Results: The results showed that there were significant difference in microbial composition between not only each of the dairy elements but also management styles. The primary exceptions were the microbiomes of the house fly and the stable fly. Their compositions heavily overlapped with one another, but interestingly, not with the other components sampled. Additionally, both species of flies carried more pathogens than the other elements of the dairy, indicating that they may not share these organisms with the other components, or that the environments offered by the other components are unsatisfactory for the survival of some pathogens.. Conclusion: The lack of overlapping pathogen profiles suggests a lack of transfer from flies to other dairy elements. Dairy health data, showing a low incidence of disease, suggests minimal sharing of bacteria by the flies at a level required for infection, given the health program of this dairy. While flies did carry a multitude of pathogenic bacteria, the mere presence of the bacteria associated with the flies did not necessarily translate into high risk leading to morbidity and mortality at this dairy. Thus, using flies as the sole sentinel of dairy health may not be appropriate for all bacterial pathogens or dairies.

7.
Microorganisms ; 12(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38257860

ABSTRACT

Livestock producers need new technologies to maintain the optimal health and well-being of their animals while minimizing the risks of propagating and disseminating pathogenic and antimicrobial-resistant bacteria to humans or other animals. Where possible, these interventions should contribute to the efficiency and profitability of animal production to avoid passing costs on to consumers. In this study, we examined the potential of nitroethane, 3-nitro-1-propionate, ethyl nitroacetate, taurine and L-cysteinesulfinic acid to modulate rumen methane production, a digestive inefficiency that results in the loss of up to 12% of the host's dietary energy intake and a major contributor of methane as a greenhouse gas to the atmosphere. The potential for these compounds to inhibit the foodborne pathogens, Escherichia coli O157:H7 and Salmonella Typhimurium DT104, was also tested. The results from the present study revealed that anaerobically grown O157:H7 and DT104 treated with the methanogenic inhibitor, ethyl nitroacetate, at concentrations of 3 and 9 mM had decreased (p < 0.05) mean specific growth rates of O157:H7 (by 22 to 36%) and of DT104 (by 16 to 26%) when compared to controls (0.823 and 0.886 h-1, respectively). The growth rates of O157:H7 and DT104 were decreased (p < 0.05) from controls by 31 to 73% and by 41 to 78% by α-lipoic acid, which we also found to inhibit in vitro rumen methanogenesis up to 66% (p < 0.05). Ethyl nitroacetate was mainly bacteriostatic, whereas 9 mM α-lipoic acid decreased (p < 0.05) maximal optical densities (measured at 600 nm) of O157:H7 and DT104 by 25 and 42% compared to controls (0.448 and 0.451, respectively). In the present study, the other oxidized nitro and organosulfur compounds were neither antimicrobial nor anti-methanogenic.

8.
Pathogens ; 11(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36422632

ABSTRACT

Yersinia ruckeri is an important fish pathogen causing enteric redmouth disease. Antibiotics have traditionally been used to control this pathogen, but concerns of antibiotic resistance have created a need for alternative interventions. Presently, chlorate and certain nitrocompounds were tested against Y. ruckeri as well as a related species within the genus, Y. aleksiciae, to assess the effects of these inhibitors. The results reveal that 9 mM chlorate had no inhibitory effect against Y. ruckeri, but inhibited growth rates and maximum optical densities of Y. aleksciciae by 20-25% from those of untreated controls (0.46 h-1 and 0.29 maximum optical density, respectively). The results further reveal that 2-nitropropanol and 2-nitroethanol (9 mM) eliminated the growth of both Y. ruckeri and Y. aleksiciae during anaerobic or aerobic culture. Nitroethane, ethyl nitroacetate and ethyl-2-nitropropionate (9 mM) were less inhibitory when tested similarly. Results from a mixed culture of Y. ruckeri with fish tank microbes and of Y. aleksiciae with porcine fecal microbes reveal that the anti-Yersinia activity of the tested nitrocompounds was bactericidal, with 2-nitropropanol and 2-nitroethanol being more potent than the other tested nitrocompounds. The anti-Yersinia activity observed with these tested compounds warrants further study to elucidate the mechanisms of action and strategies for their practical application.

9.
Front Microbiol ; 13: 875930, 2022.
Article in English | MEDLINE | ID: mdl-35847098

ABSTRACT

Lesser mealworms are often found infesting production houses used to raise broiler chickens. Previous studies have investigated pathogenic microorganisms associated with the larvae, but a more thorough study relating total microbiome changes due to management procedures and flock rotations was needed. Additionally, there is a question of what microbiota are transferred into the environment when the litter, in which larvae reside, is piled in pastureland for use as fertilizer and where interactions with the soil and other fauna can occur. This study chronicled, by the 16S rRNA sequencing, the bacterial community profile of larvae in a broiler grow-out house synchronizing to when birds were added to and removed from the house over 2.5 years. The profile was found to be relatively constant despite 11 flock rotations and management disruptions, specifically litter cleanout procedures and the addition of new birds or bedding. In contrast, once removed from the controlled broiler house environment and placed into open pastureland, the substantial microbial diversity brought with the larvae showed greater fluctuation in structure with environmental conditions, one of which was rainfall. Surprisingly, these larvae survived at least 19 weeks, so the potential for moving larval-associated microbes into the environment needs further assessment to minimize the risk of relocating foodborne pathogens and also to assess those bacteria-generating metabolites that have benefits to plant growth when using the litter as a fertilizer. The characterization of their microbiome is the first step to investigating the influences of their microbes on the manmade and environmental ecosystems.

10.
Front Vet Sci ; 9: 930980, 2022.
Article in English | MEDLINE | ID: mdl-35799835

ABSTRACT

Poultry litter is a good crude protein supplement for ruminants but must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks loss of ammonia due to uric acid degradation. The objectives of this study were to test the ability of tannins to reduce pathogens and preserve uric acid during poultry litter composting. In two experiments, poultry litter was mixed with phosphate buffer and distributed to 50-ml tubes (three tubes/treatment per sample day) amended with 1 ml buffer alone or buffer containing pine bark, quebracho, chestnut, or mimosa tannins. Treatments achieved 0.63% (wt/wt) quebracho, chestnut, or mimosa tannins in experiment 1, or 4.5% pine bark or 9% quebracho, chestnut, or mimosa tannins in experiment 2. Tubes were inoculated with a novobiocin- and nalidixic acid-resistant Salmonella typhimurium, closed with caps, and incubated at successive 3-day increments at 22, 37, and 42°C, respectively. In experiment 1, bacterial counts in contents collected on days 0, 6, and 9 revealed a treatment by day effect (p < 0.03), with the Salmonella challenge being 1.3 log10 CFU/g higher in quebracho-treated composts than in untreated controls after 6 days of composting. After 9 days of composting, Salmonella, wildtype Escherichia coli, and total aerobes in untreated and all tannin-treated composts were decreased by about 2.0 log10 CFU/g compared to day 0 numbers (3.06, 3.75, and 7.77 log10 CFU/g, respectively). Urea and ammonia concentrations tended (p < 0.10) to be increased in chestnut-treated composts compared to controls and concentrations of uric acid, urea, and ammonia were higher (p < 0.05) after 9 days of composting than on day 0. Despite higher tannin application in experiment 2, antibacterial effects of treatment or day of composting were not observed (p > 0.05). However, treatment by time of composting interactions was observed (p < 0.05), with quebracho- and chestnut-treated composts accumulating more uric acid after 24 h and 9 days of composting and chestnut-, mimosa- or quebracho-treated composts accumulating less ammonia than untreated composts. Results demonstrate that composting may effectively control pathogens and that tannin treatment can help preserve the crude protein quality of composting poultry litter.

11.
Front Vet Sci ; 9: 817270, 2022.
Article in English | MEDLINE | ID: mdl-35187146

ABSTRACT

Nitroethane is a potent methane-inhibitor for ruminants but little is known regarding simultaneous effects of repeated administration on pre- and post-gastric methane-producing activity and potential absorption and systemic accumulation of nitroethane in ruminants. Intraruminal administration of 120 mg nitroethane/kg body weight per day to Holstein cows (n = 2) over a 4-day period transiently reduced (P < 0.05) methane-producing activity of rumen fluid as much as 3.6-fold while concomitantly increasing (P < 0.05) methane-producing activity of feces by as much as 8.8-fold when compared to pre-treatment measurements. These observations suggest a bacteriostatic effect of nitroethane on ruminal methanogen populations resulting in increased passage of viable methanogens to the lower bovine gut. Ruminal VFA concentrations were also transiently affected by nitroethane administration (P < 0.05) reflecting adaptive changes in the rumen microbial populations. Mean (± SD) nitroethane concentrations in plasma of feedlot steers (n = 6/treatment) administered 80 or 160 mg nitroethane/kg body weight per day over a 7-day period were 0.12 ± 0.1 and 0.41 ± 0.1 µmol/mL 8 h after the initial administration indicating rapid absorption of nitroethane, with concentrations peaking 1 day after initiation of the 80 or 160 mg nitroethane/kg body weight per day treatments (0.38 ± 0.1 and 1.14 ± 0.1 µmol/mL, respectively). Plasma nitroethane concentrations declined thereafter to 0.25 ± 0.1 and 0.78 ± 0.3 and to 0.18 ± 0.1 and 0.44 ± 0.3 µmol/mL on days 2 and 7 for the 80 or 160 mg nitroethane/kg body weight per day treatment groups, respectively, indicating decreased absorption due to increased ruminal nitroethane degradation or to more rapid excretion of the compound.

12.
Microorganisms ; 10(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056628

ABSTRACT

The facilities used to raise broiler chickens are often infested with litter beetles (lesser mealworm, Alphitobius diaperinus). These beetles have been studied for their carriage of pathogenic microbes; however, a more comprehensive microbiome study on these arthropods is lacking. This study investigated their microbial community in a longitudinal study throughout 2.5 years of poultry production and after the spent litter, containing the mealworms, was piled in pastureland for use as fertilizer. The mean most abundant phyla harbored by the beetles in house were the Proteobacteria (39.8%), then Firmicutes (30.8%), Actinobacteria (21.1%), Tenericutes (5.1%), and Bacteroidetes (1.6%). The community showed a modest decrease in Firmicutes and increase in Proteobacteria over successive flock rotations. The beetles were relocated within the spent litter to pastureland, where they were found at least 19 weeks later. Over time in the pastureland, their microbial profile underwent a large decrease in the percent of Firmicutes (20.5%). The lesser mealworm showed an ability to survive long-term in the open environment within the spent litter, where their microbiome should be further assessed to both reduce the risk of transferring harmful bacteria, as well as to enhance their contribution when the litter is used as a fertilizer.

13.
Annu Rev Food Sci Technol ; 13: 433-461, 2022 03 25.
Article in English | MEDLINE | ID: mdl-34990223

ABSTRACT

The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics-also known as direct-fed microbials-competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement-based treatments in food-producing animals.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Synbiotics , Animals , Gastrointestinal Tract/microbiology , Prebiotics
14.
Microorganisms ; 9(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34835526

ABSTRACT

Staphylococcus aureus (S. aureus) causes gastrointestinal illness worldwide. Disinfectants are used throughout the food chain for pathogenic bacteria control. We investigated S. aureus bioavailability in swine Mandibular lymph node tissue (MLT) and pork sausage meat (PSM), established susceptibility values for S. aureus to disinfectants, and determined the multilocus sequence type of MRSA strains. Antimicrobial and disinfectant susceptibility profiles were determined for 164 S. aureus strains isolated from swine feces (n = 63), MLT (n = 49) and PSM (n = 52). No antimicrobial resistance (AMR) was detected to daptomycin, nitrofurantoin, linezolid, and tigecycline, while high AMR prevalence was determined to erythromycin (50.6%), tylosin tartrate (42.7%), penicillin (72%), and tetracycline (68.9%). Methicillin-resistant S. aureus (MRSA) strains, ST398 (n = 6) and ST5 (n = 1), were found in the MLT and PSM, 4 MRSA in MLT and 3 MRSA strains in the PSM. About 17.5% of feces strains and 41.6% of MLT and PSM strains were resistant to chlorhexidine. All strains were susceptible to triclosan and benzalkonium chloride, with no cross-resistance between antimicrobials and disinfectants. Six MRSA strains had elevated susceptibilities to 18 disinfectants. The use of formaldehyde and tris(hydroxylmethyl)nitromethane in DC&R was not effective, which can add chemicals to the environment. Didecyldimethylammonium chloride and benzyldimethylhexadecylammonium chloride were equally effective disinfectants. ST398 and ST5 MRSA strains had elevated susceptibilities to 75% of the disinfectants tested. This study establishes susceptibility values for S. aureus strains from swine feces, mandibular lymph node tissue, and commercial pork sausage against 24 disinfectants. Since it was demonstrated that S. aureus and MRSA strains can be found deep within swine lymph node tissue, it may be beneficial for the consumer if raw swine lymph node tissue is not used in uncooked food products and pork sausage.

15.
Front Vet Sci ; 8: 751266, 2021.
Article in English | MEDLINE | ID: mdl-34631867

ABSTRACT

Strategies are sought to reduce the carriage and dissemination of zoonotic pathogens and antimicrobial-resistant microbes within food-producing animals and their production environment. Thymol (an essential oil) is a potent bactericide in vitro but in vivo efficacy has been inconsistent, largely due to its lipophilicity and absorption, which limits its passage and subsequent availability in the distal gastrointestinal tract. Conjugation of thymol to glucose to form thymol-ß-d-glucopyranoside can decrease its absorption, but in vivo passage of effective concentrations to the lower gut remains suboptimal. Considering that contemporary swine diets often contain 5% or more added fat (to increase caloric density and reduce dustiness), we hypothesized that there may be sufficient residual fat in the distal intestinal tract to sequester free or conjugated thymol, thereby limiting the availability and subsequent effectiveness of this biocide. In support of this hypothesis, the anti-Salmonella Typhimurium effects of 6 mM free or conjugated thymol, expressed as log10-fold reductions of colony-forming units (CFU) ml-1, were diminished 90 and 58%, respectively, following 24-h in vitro anaerobic fecal incubation (at 39°C) with 3% added vegetable oil compared to reductions achieved during culture without added oil (6.1 log10 CFU ml-1). The antagonistic effect of vegetable oil and the bactericidal effect of free and conjugated thymol against Escherichia coli K88 tested similarly were diminished 86 and 84%, respectively, compared to reductions achieved in cultures incubated without added vegetable oil (5.7 log10 CFU ml-1). Inclusion of taurine (8 mg/ml), bile acids (0.6 mg/ml), or emulsifiers such as polyoxyethylene-40 stearate (0.2%), Tween 20, or Tween 80 (each at 1%) in the in vitro incubations had little effect on vegetable oil-caused inhibition of free or conjugated thymol. Based on these results, it seems reasonable to suspect that undigested lipid in the distal gut may limit the effectiveness of free or conjugated thymol. Accordingly, additional research is warranted to learn how to overcome obstacles diminishing bactericidal activity of free and conjugated thymol in the lower gastrointestinal tract of food-producing animals.

16.
Animals (Basel) ; 11(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34438848

ABSTRACT

Eighteen growing rumen-cannulated steers, with initial body weight (BW) of 167.4 ± 7.10 kg, were randomly allocated to one of three treatments that included a control (0% CT) and two CT treatment levels (0.05% and 0.07% condensed tannins (CT)/kg BW) with two replicates each. Both in vivo and in vitro experiments were conducted. In Exp. 1, final BW and average daily gain were greater (p < 0.05) for the 0.07% CT treatment compared to either 0.05% CT or control groups. Rumen bacterial populations in steers fed winter wheat in the absence of CT represented large proportions of the moderate-guanines and cytosines (GC) containing bacterial clusters with similarity coefficient (SC) ranging from 64% to 92% In the presence of CT on day 0, day 20, and day 60, however, the SC was 60% or greater (90% SC) with multiple bacterial band clusters as shown by the denaturing gel gradient electrophoresis banding patterns. In Exp. 2, in vitro total gas, potential gas, and CH4 productions decreased (p < 0.01) as CT supplementation increased in steers grazing wheat forage. These results suggested that the administration of CT improved BW gain and induced bacterial community changes in the rumen of steers grazing wheat forage.

17.
Trop Anim Health Prod ; 53(4): 436, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34401959

ABSTRACT

Ruminal methanogenesis is considered an inefficient process as it can result in the loss of 4 to 12% of the total energy consumed by the ruminant. Recent studies have shown that compounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid are capable of inhibiting methane production during in vitro studies. However, all of these nitrocompounds came from a synthetic origin, which could limit their use. In contrast, some plants of the Astragallus genus produce a natural nitrocompound, although its anti-methanogenic effect has not been evaluated. To determine the anti-methanogenic effect, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with A. mollissimus extracts (MISER). Cultures supplemented with 2-nitroethanol, ethyl 2-nitroacetate, or nitroethane were used as positive controls whereas distilled water was added to the untreated control tubes. After a 24 h incubation period, the methane production was reduced by more than 98% for the samples treated with A. mollissimus extract (P < 0.05) compared to the untreated controls (10.2 ± 0.1 mmol mL-1 incubated liquid). Cultures supplemented with MISER produced a greater (P < 0.05) amount of total VFA, compared to the rest of treated and untreated cultures. Considering that there are significant differences between MISER treatment, positive controls and untreated cultures (P < 0.05) regarding the amounts of total gas, gas composition (CH4 and H2), and the amount of VFA produced, it is concluded that Astragallus mollissimus poses an alternative strategy to reduce ruminal methanogenesis. To further explore such alternative, it is necessary to determine if the metabolization byproducts are safe and/or useful for the animal.


Subject(s)
Methane , Plant Extracts , Animals , Dietary Supplements , Fermentation , Methane/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Rumen/metabolism , Ruminants
18.
Microorganisms ; 9(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923741

ABSTRACT

The gut of food-producing animals is a reservoir for foodborne pathogens. Thymol is bactericidal against foodborne pathogens but rapid absorption of thymol from the proximal gut precludes the delivery of effective concentrations to the lower gut where pathogens mainly colonize. Thymol-ß-d-glucopyranoside is reported to be more resistant to absorption than thymol in everted jejunal segments and could potentially function as a prebiotic by resisting degradation and absorption in the proximal gut but being hydrolysable by microbial ß-glycosidase in the distal gut. Previous in vitro studies showed bactericidal effects of thymol-ß-d-glucopyranoside against Campylobacter, Escherichia coli, and Salmonella enterica serovar Typhimurium in the presence but not absence of intestinal microbes expressing ß-glycosidase activity, indicating that hydrolysis was required to obtain antimicrobial activity. Presently, the oral administration of thymol-ß-d-glucopyranoside was studied to examine the effects on intestinal carriage of Campylobacter, E. coli, and S. Typhimurium in swine. The effects of thymol-ß-d-glucopyranoside or thymol on antimicrobial sensitivity of representative E. coli isolates and characterized Salmonella strains were also explored. Results from two in vivo studies revealed little antimicrobial effects of thymol-ß-d-glucopyranoside on Campylobacter, E. coli, or S. Typhimurium in swine gut. These findings add credence to current thinking that hydrolysis and absorption of thymol-ß-d-glucopyranoside and thymol may be sufficiently rapid within the proximal gut to preclude delivery to the distal gut. Antibiotic susceptibilities of selected bacterial isolates and strains were mainly unaffected by thymol. Further research is warranted to overcome obstacles, preventing the delivery of efficacious amounts of thymol-ß-d-glucopyranoside to the lower gut.

19.
Appl Environ Microbiol ; 87(12): e0048521, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33863705

ABSTRACT

Salmonella enterica is a major foodborne pathogen, and contaminated beef products have been identified as one of the primary sources of Salmonella-related outbreaks. Pathogenicity and antibiotic resistance of Salmonella are highly serotype and subpopulation specific, which makes it essential to understand high-resolution Salmonella population dynamics in cattle. Time of year, source of cattle, pen, and sample type (i.e., feces, hide, or lymph nodes) have previously been identified as important factors influencing the serotype distribution of Salmonella (e.g., Anatum, Lubbock, Cerro, Montevideo, Kentucky, Newport, and Norwich) that were isolated from a longitudinal sampling design in a research feedlot. In this study, we performed high-resolution genomic comparisons of Salmonella isolates within each serotype using both single-nucleotide polymorphism-based maximum-likelihood phylogeny and hierarchical clustering of core-genome multilocus sequence typing. The importance of the aforementioned features in clonal Salmonella expansion was further explored using a supervised machine learning algorithm. In addition, we identified and compared the resistance genes, plasmids, and pathogenicity island profiles of the isolates within each subpopulation. Our findings indicate that clonal expansion of Salmonella strains in cattle was mainly influenced by the randomization of block and pen, as well as the origin/source of the cattle, i.e., regardless of sampling time and sample type (i.e., feces, lymph node, or hide). Further research is needed concerning the role of the feedlot pen environment prior to cattle placement to better understand carryover contributions of existing strains of Salmonella and their bacteriophages. IMPORTANCESalmonella serotypes isolated from outbreaks in humans can also be found in beef cattle and feedlots. Virulence factors and antibiotic resistance are among the primary defense mechanisms of Salmonella, and are often associated with clonal expansion. This makes understanding the subpopulation dynamics of Salmonella in cattle critical for effective mitigation. There remains a gap in the literature concerning subpopulation dynamics within Salmonella serotypes in feedlot cattle from the beginning of feeding up until slaughter. Here, we explore Salmonella population dynamics within each serotype using core-genome phylogeny and hierarchical classifications. We used machine learning to quantitatively parse the relative importance of both hierarchical and longitudinal clustering among cattle host samples. Our results reveal that Salmonella populations in cattle are highly clonal over a 6-month study period and that clonal dissemination of Salmonella in cattle is mainly influenced spatially by experimental block and pen, as well by the geographical origin of the cattle.


Subject(s)
Cattle Diseases/microbiology , Cattle/microbiology , Drug Resistance, Bacterial/genetics , Salmonella Infections, Animal/microbiology , Salmonella enterica/genetics , Animal Husbandry , Animals , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Disaccharides/pharmacology , Feces/microbiology , Genomics , Heterocyclic Compounds/pharmacology , Machine Learning , Phylogeny , Polymorphism, Single Nucleotide , Serogroup
20.
Sci Total Environ ; 780: 146413, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33774310

ABSTRACT

With the increasing demand for broiler meat, a thorough evaluation of the microbial community within the broiler houses and sites where litter is deposited is critical to animal and environmental wellbeing. However not much is known in this arena, so our work evaluates the litter bacterial microbial community within a house over a 2.5 year period through 11 flock rotations, a partial and a total cleanout, and the subsequent deposition of the litter as fertilizer on pastureland. The effects of both time and management practices correlated with alterations of the litter microbial community. The cleanout practices and introduction of new bedding had minimal influence on the house microbial community once it was established, which generally showed a consistent increase in the proportion of Actinobacteria and a decrease in Firmicutes over the 11 flock rotations. Analysis of the bacterial profile at the genus level gave increased resolution, revealing changes during the first and second flock rotation and after the total cleanout. The disturbance of the partial cleanout seemed to be buffered by the supporting conditions within the house while the total cleanout showed a small, but significant influence. The pastureland deposition of litter, however, was affected by time and abiotic factors that changed the litter microbial community structure weekly. The stockpiled litter had an increase in the phyla Actinobacteria and the class Bacilli that commonly have microbes utilizing nitrogen and decaying materials, in comparison to Native soil. Further, the soil beneath where the litter was stored for 20 weeks, lost diversity, indicating a possible effect of the litter stockpiling on environmental quality at that site. How management practices affect the composition of the microbial community within the litter of the broiler house is of interest in terms of bird health and environmentally for future utilization of spent litter.


Subject(s)
Chickens , Poultry , Animals , Fertilizers , Nitrogen , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...