Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
bioRxiv ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39149304

ABSTRACT

Background: Genomic analysis has revealed extensive contamination among laboratory-maintained microbes including malaria parasites, Mycobacterium tuberculosis and Salmonella spp. Here, we provide direct evidence for recent contamination of a laboratory schistosome parasite population, and we investigate its genomic consequences. The Brazilian Schistosoma mansoni population SmBRE has several distinctive phenotypes, showing poor infectivity, reduced sporocysts number, low levels of cercarial shedding and low virulence in the intermediate snail host, and low worm burden and low fecundity in the vertebrate rodent host. In 2021 we observed a rapid change in SmBRE parasite phenotypes, with a ∼10x increase in cercarial production and ∼4x increase in worm burden. Methods: To determine the underlying genomic cause of these changes, we sequenced pools of SmBRE adults collected during parasite maintenance between 2015 and 2023. We also sequenced another parasite population (SmLE) maintained alongside SmBRE without phenotypic changes. Results: While SmLE allele frequencies remained stable over the eight-year period, we observed sudden changes in allele frequency across the genome in SmBRE between July 2021 and February 2023, consistent with expectations of laboratory contamination. (i) SmLE-specific alleles rose in the SmBRE population from 0 to 41-46% across the genome between September and October 2021, documenting the timing and magnitude of the contamination event. (ii) After contamination, strong selection ( s = ∼0.23) drove replacement of low fitness SmBRE with high fitness SmLE alleles. (iii) Allele frequency changed rapidly across the whole genome, except for a region on chromosome 4 where SmBRE alleles remained at high frequency. Conclusions: We were able to detect contamination in this case because SmBRE shows distinctive phenotypes. However, this would likely have been missed with phenotypically similar parasites. These results provide a cautionary tale about the importance of tracking the identity of parasite populations, but also showcase a simple approach to monitor changes within populations using molecular profiling of pooled population samples to characterize fixed single nucleotide polymorphisms. We also show that genetic drift results in continuous change even in the absence of contamination, causing parasites maintained in different labs (or sampled from the same lab at different times) to diverge.

2.
bioRxiv ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39149400

ABSTRACT

The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the extent of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium . We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) demonstrate strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of interspecific hybridization between schistosomes of medical and veterinary importance.

3.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071294

ABSTRACT

Pathogen genomics is a powerful tool for tracking infectious disease transmission. In malaria, identity-by-descent (IBD) is used to assess the genetic relatedness between parasites and has been used to study transmission and importation. In theory, IBD can be used to distinguish genealogical relationships to reconstruct transmission history or identify parasites for genotype-to-phenotype quantitative-trait-locus experiments. MalKinID (Malaria Kinship Identifier) is a new likelihood-based classification model designed to identify genealogical relationships among malaria parasites based on genome-wide IBD proportions and IBD segment distributions. MalKinID was calibrated to the genomic data from three laboratory-based genetic crosses (yielding 440 parent-child and 9060 full-sibling comparisons). MalKinID identified lab generated F1 progeny with >80% sensitivity and showed that 0.39 (95% CI 0.28, 0.49) of the second-generation progeny of a NF54 and NHP4026 cross were F1s and 0.56 (0.45, 0.67) were backcrosses of an F1 with the parental NF54 strain. In simulated outcrossed importations, MalKinID accurately reconstructs genealogy history with high precision and sensitivity, with F1-scores exceeding 0.84. However, when importation involves inbreeding, such as during serial co-transmission, the precision and sensitivity of MalKinID declined, with F1-scores of 0.76 (0.56, 0.92) and 0.23 (0.0, 0.4) for PC and FS and <0.05 for second-degree and third-degree relatives. Genealogical inference is most powered 1) when outcrossing is the norm or 2) when multi-sample comparisons based on a predefined pedigree are used. MalKinID lays the foundations for using IBD to track parasite transmission history and for separating progeny for quantitative-trait-locus experiments.

4.
mBio ; 15(7): e0080524, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38912775

ABSTRACT

Piperaquine (PPQ) is widely used in combination with dihydroartemisinin as a first-line treatment against malaria. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multidrug-resistant KEL1/PLA1 lineage isolate (KH004) and a drug-susceptible Malawian parasite (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and multiple copies of pm2/3. We recovered 104 unique recombinant parasites and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3. We performed a detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes with these progenies, including PPQ survival assay, area under the dose response curve, and a limited point IC50. We find that inheritance of the KH004 pfcrt allele is required for reduced PPQ sensitivity, whereas copy number variation in pm2/3 further decreases susceptibility but does not confer resistance in the absence of additional mutations in pfcrt. A deep investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background to a range of PPQ-related traits. Additionally, we find that the resistance phenotype associated with parasites inheriting the G367C substitution in pfcrt is consistent with previously validated PPQ resistance mutations in this transporter.IMPORTANCEResistance to piperaquine, used in combination with dihydroartemisinin, has emerged in Cambodia and threatens to spread to other malaria-endemic regions. Understanding the causal mutations of drug resistance and their impact on parasite fitness is critical for surveillance and intervention and can also reveal new avenues to limiting the evolution and spread of drug resistance. An experimental genetic cross is a powerful tool for pinpointing the genetic determinants of key drug resistance and fitness phenotypes and has the distinct advantage of quantifying the effects of naturally evolved genetic variation. Our study was strengthened since the full range of copies of KH004 pm2/3 was inherited among the progeny clones, allowing us to directly test the role of the pm2/3 copy number on resistance-related phenotypes in the context of a unique pfcrt allele. Our multigene model suggests an important role for both loci in the evolution of this multidrug-resistant parasite lineage.


Subject(s)
Antimalarials , Aspartic Acid Endopeptidases , Drug Resistance , Membrane Transport Proteins , Plasmodium falciparum , Protozoan Proteins , Quinolines , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Drug Resistance/genetics , Antimalarials/pharmacology , Quinolines/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Membrane Transport Proteins/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy , Humans , Alleles , Cambodia , Mutation , Piperazines
5.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711063

ABSTRACT

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Subject(s)
Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
6.
Res Sq ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38313261

ABSTRACT

Background: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.

7.
Antimicrob Agents Chemother ; 68(3): e0143223, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289079

ABSTRACT

We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci situated on chromosomes 2 and 3. We reanalyzed this GWAS using the latest (version 10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that PZQ response is monogenic and demonstrates the importance of high-quality genomic information.


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Animals , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma mansoni/genetics , Genome-Wide Association Study , Drug Resistance , Schistosomiasis mansoni/drug therapy , Anthelmintics/pharmacology , Anthelmintics/therapeutic use
8.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260613

ABSTRACT

Background: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa, and viruses, but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. Methods: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over an infection period of 12 weeks. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology), and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. Results: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area, but not in granuloma size. Variation in organ weight was explained by egg burden and by intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokines (IFN-γ, TNF-α), eosinophil, lymphocyte, and monocyte counts. Conclusions: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotype impact immunopathology outcomes.

9.
bioRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961217

ABSTRACT

We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci (QTL) situated on chromosome 2 and chromosome 3. We reanalyzed this GWAS using the latest (v10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that praziquantel response is monogenic and demonstrates the importance of high-quality genomic information.

10.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745488

ABSTRACT

Piperaquine (PPQ) is widely used in combination with dihydroartemisinin (DHA) as a first-line treatment against malaria parasites. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multi-drug resistant KEL1/PLA1 lineage isolate (KH004) and a drug susceptible parasite isolated in Malawi (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and four copies of pm2/3. We recovered 104 unique recombinant progeny and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3 for detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes, including PPQ survival assay (PSA), area under the dose-response curve (AUC), and a limited point IC50 (LP-IC50). We find that inheritance of the KH004 pfcrt allele is required for PPQ resistance, whereas copy number variation in pm2/3 further enhances resistance but does not confer resistance in the absence of PPQ-R-associated mutations in pfcrt. Deeper investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background, to a range of PPQ-related traits and confirm the critical role of the PfCRT G367C substitution in PPQ resistance.

11.
Emerg Infect Dis ; 29(8): 1566-1579, 2023 08.
Article in English | MEDLINE | ID: mdl-37486179

ABSTRACT

More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882‒6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.


Subject(s)
DNA , Zoonoses , Animals , Humans , DNA/genetics , Zoonoses/microbiology , Fungi , Bacteria/genetics , Mammals
12.
Nat Microbiol ; 8(7): 1213-1226, 2023 07.
Article in English | MEDLINE | ID: mdl-37169919

ABSTRACT

Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.


Subject(s)
Chloroquine , Malaria, Falciparum , Humans , Amino Acid Transport Systems/metabolism , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
13.
Parasit Vectors ; 16(1): 132, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069704

ABSTRACT

BACKGROUND: The trematode parasite Schistosoma mansoni uses an aquatic snail intermediate and a vertebrate definitive host to complete its life cycle. We previously showed that a key transmission trait-the number of cercariae larvae shed from infected Biomphalaria spp. snails-varies significantly within and between different parasite populations and is genetically controlled by five loci. We investigated the hypothesis that the success of parasite genotypes showing high propagative fitness in the intermediate snail host may be offset by lower reproductive fitness in the definitive vertebrate host. METHODS: We investigated this trade-off hypothesis by selecting parasite progeny producing high or low number of larvae in the snail and then comparing fitness parameters and virulence in the rodent host. We infected inbred BALB/c mice using two Schistosoma mansoni parasite lines [high shedder (HS) and low shedder (LS) lines] isolated from F2 progeny generated by genetic crosses between SmLE (HS parent) and SmBRE (LS parent) parasites. We used the F3 progeny to infect two populations of inbred Biomphalaria glabrata snails. We then compared life history traits and virulence of these two selected parasite lines in the rodent host to understand pleiotropic effects of genes determining cercarial shedding in parasites infecting the definitive host. RESULTS: HS parasites shed high numbers of cercariae, which had a detrimental impact on snail physiology (measured by laccase-like activity and hemoglobin rate), regardless of the snail genetic background. In contrast, selected LS parasites shed fewer cercariae and had a lower impact on snail physiology. Similarly, HS worms have a higher reproductive fitness and produced more viable F3 miracidia larvae than LS parasites. This increase in transmission is correlated with an increase in virulence toward the rodent host, characterized by stronger hepato-splenomegaly and hepatic fibrosis. CONCLUSIONS: These experiments revealed that schistosome parasite propagative and reproductive fitness was positively correlated in intermediate and definitive host (positive pleiotropy). Therefore, we rejected our trade-off hypothesis. We also showed that our selected schistosome lines exhibited low and high shedding phenotype regardless of the intermediate snail host genetic background. ​.


Subject(s)
Biomphalaria , Parasites , Trematoda , Mice , Animals , Host-Parasite Interactions/physiology , Schistosoma mansoni/physiology , Biomphalaria/parasitology , Snails , Cercaria/genetics
14.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778235

ABSTRACT

Sequence variation among antigenic var genes enables Plasmodium falciparum malaria parasites to evade host immunity. Using long sequence reads from haploid clones from a mutation accumulation experiment, we detect var diversity inconsistent with simple chromosomal inheritance. We discover putatively circular DNA that is strongly enriched for var genes, which exist in multiple alleles per locus separated by recombination and indel events. Extrachromosomal DNA likely contributes to rapid antigenic diversification in P. falciparum.

15.
PLoS Pathog ; 18(12): e1010993, 2022 12.
Article in English | MEDLINE | ID: mdl-36542676

ABSTRACT

The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P. falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1, show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci (dhps, mdr1, and dhfr). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Chloroquine/therapeutic use , Drug Resistance/genetics , South America/epidemiology
16.
Pharmaceutics ; 14(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35890311

ABSTRACT

Oxamniquine (OXA) is a prodrug activated by a sulfotransferase (SULT) that was only active against Schistosoma mansoni. We have reengineered OXA to be effective against S. haematobium and S. japonicum. Three derivatives stand out, CIDD-0066790, CIDD-0072229, and CIDD-0149830 as they kill all three major human schistosome species. However, questions remain. Is the OXA mode of action conserved in derivatives? RNA-interference experiments demonstrate that knockdown of the SmSULT, ShSULT, and SjSULT results in resistance to CIDD-0066790. Confirming that the OXA-derivative mode of action is conserved. Next is the level of expression of the schistosome SULTs in each species, as well as changes in SULT expression throughout development in S. mansoni. Using multiple tools, our data show that SmSULT has higher expression compared to ShSULT and SjSULT. Third, is the localization of SULT in the adult, multicellular eucaryotic schistosome species. We utilized fluorescence in situ hybridization and uptake of radiolabeled OXA to determine that multiple cell types throughout the adult schistosome worm express SULT. Thus, we hypothesize the ability of many cells to express the sulfotransferase accounts for the ability of the OXA derivatives to kill adult worms. Our studies demonstrate that the OXA derivatives are able to kill all three human schistosome species and thus will be a useful complement to PZQ.

17.
Mol Ecol ; 31(8): 2242-2263, 2022 04.
Article in English | MEDLINE | ID: mdl-35152493

ABSTRACT

Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.


Subject(s)
Biomphalaria , Parasites , Americas , Animals , Biomphalaria/genetics , Biomphalaria/parasitology , Humans , Schistosoma mansoni/genetics , Senegal/epidemiology , Snails/genetics , Tanzania
18.
Trends Parasitol ; 38(5): 353-355, 2022 05.
Article in English | MEDLINE | ID: mdl-35190282

ABSTRACT

Aquatic snails, the intermediate hosts of schistosomes, harbor a diverse unexplored microbiome. We speculate that this may play a critical role in host-parasite interactions. We summarize our current knowledge of snail microbiomes and highlight future research priorities.


Subject(s)
Biomphalaria , Microbiota , Animals , Biomphalaria/parasitology , Host-Parasite Interactions , Schistosoma , Schistosoma mansoni
19.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34936381

ABSTRACT

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Subject(s)
Anthelmintics , Parasites , Schistosomiasis mansoni , Transient Receptor Potential Channels , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Genome-Wide Association Study , Parasites/metabolism , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/parasitology , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/therapeutic use
20.
Cell Host Microbe ; 29(10): 1496-1506.e3, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34492224

ABSTRACT

Population genomics of bulk malaria infections is unable to examine intrahost evolution; therefore, most work has focused on the role of recombination in generating genetic variation. We used single-cell sequencing protocol for low-parasitaemia infections to generate 406 near-complete single Plasmodium vivax genomes from 11 patients sampled during sequential febrile episodes. Parasite genomes contain hundreds of de novo mutations, showing strong signatures of selection, which are enriched in the ApiAP2 family of transcription factors, known targets of adaptation. Comparing 315 P. falciparum single-cell genomes from 15 patients with our P. vivax data, we find broad complementary patterns of de novo mutation at the gene and pathway level, revealing the importance of within-host evolution during malaria infections.


Subject(s)
Genome, Protozoan , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Animals , Evolution, Molecular , Genetic Variation , Humans , Malaria, Vivax/genetics , Mutation , Plasmodium vivax/cytology , Plasmodium vivax/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Single-Cell Analysis , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL