Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 81: 157-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081506

ABSTRACT

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Subject(s)
Sulfatases , Humans , Sulfatases/genetics , Sulfatases/metabolism
2.
BMC Cell Biol ; 8: 6, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-17309805

ABSTRACT

BACKGROUND: Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. RESULTS: We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. CONCLUSION: Widely-used adenovirus vectors for gene delivery cause a state of insulin unresponsiveness in human SHSY-5Y and C3A cells in culture due to the activation of central protein kinases of the insulin signalling pathway. This phenomenon can be avoided when studying insulin signalling by using recombinant baculovirus as a heterologous viral expression system. In addition, our data may contribute to an understanding of the molecular mechanisms underlying baculovirus infection of human cells.


Subject(s)
Baculoviridae , Gene Transfer Techniques , Insulin/pharmacology , Phosphotransferases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Genetic Vectors , Humans , Liver/cytology , Neuroblastoma/pathology , Phosphorylation/drug effects
3.
BMC Cell Biol ; 5: 7, 2004 Jan 26.
Article in English | MEDLINE | ID: mdl-14741056

ABSTRACT

BACKGROUND: Transfection agents comprised of cationic lipid preparations are widely used to transfect cell lines in culture with specific recombinant complementary DNA molecules. We have found that cells in culture are often resistant to stimulation with insulin subsequent to treatment with transfection agents such as LipofectAMINE 2000 and FuGENE-6. This is seen with a variety of different readouts, including insulin receptor signalling, glucose uptake into muscle cells, phosphorylation of protein kinase B and reporter gene activity in a variety of different cell types RESULTS: We now show that this is due in part to the fact that cationic lipid agents activate the insulin receptor fully during typical transfection experiments, which is then down-regulated. In attempts to circumvent this problem, we investigated the effects of increasing concentrations of LipofectAMINE 2000 on insulin receptor phosphorylation in Chinese hamster ovary cells expressing the human insulin receptor. In addition, the efficiency of transfection that is supported by the same concentrations of transfection reagent was studied by using a green fluorescent protein construct. Our data indicate that considerably lower concentrations of LipofectAMINE 2000 can be used than are recommended by the manufacturers. This is without sacrificing transfection efficiency markedly and avoids the problem of reducing insulin receptor expression in the cells. CONCLUSION: Widely-used cationic lipid transfection reagents cause a state of insulin unresponsiveness in cells in culture due to fully activating and subsequently reducing the expression of the receptor in cells. This phenomenon can be avoided by reducing the concentration of reagent used in the transfection process.


Subject(s)
Lipids/pharmacology , Receptor, Insulin/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Biological Transport/drug effects , CHO Cells , Cell Line , Cell Line, Tumor , Cricetinae , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Glucose/pharmacokinetics , Green Fluorescent Proteins , Humans , Insulin/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Plasmids/genetics , Rats , Receptor, Insulin/genetics , Transfection , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...