Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 15(2): 2249146, 2023 12.
Article in English | MEDLINE | ID: mdl-37668317

ABSTRACT

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Animals , Mice , SARS-CoV-2 , Anti-Bacterial Agents , Disease Progression
2.
Metabolites ; 13(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37233637

ABSTRACT

Pesticides constitute a category of chemical products intended specifically for the control and mitigation of pests. With their constant increase in use, the risk to human health and the environment has increased proportionally due to occupational and environmental exposure to these compounds. The use of these chemicals is associated with several toxic effects related to acute and chronic toxicity, such as infertility, hormonal disorders and cancer. The present work aimed to study the metabolic profile of individuals occupationally exposed to pesticides, using a metabolomics tool to identify potential new biomarkers. Metabolomics analysis was carried out on plasma and urine samples from individuals exposed and non-exposed occupationally, using liquid chromatography coupled with mass spectrometry (UPLC-MS). Non-targeted metabolomics analysis, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) or partial least squares discriminant orthogonal analysis (OPLS-DA), demonstrated good separation of the samples and identified 21 discriminating metabolites in plasma and 17 in urine. The analysis of the ROC curve indicated the compounds with the greatest potential for biomarkers. Comprehensive analysis of the metabolic pathways influenced by exposure to pesticides revealed alterations, mainly in lipid and amino acid metabolism. This study indicates that the use of metabolomics provides important information about complex biological responses.

3.
Metabolites ; 12(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36295880

ABSTRACT

Benzene is a human carcinogen whose exposure to concentrations below 1 ppm (3.19 mg·m-3) is associated with myelotoxic effects. The determination of biomarkers such as trans-trans muconic acid (AttM) and S-phenylmercapturic acid (SPMA) show exposure without reflecting the toxic effects of benzene. For this reason, in this study, the urinary metabolome of individuals exposed to low concentrations of benzene was investigated, with the aim of understanding the biological response to exposure to this xenobiotic and identifying metabolites correlated with the toxic effects induced by it. Ultra-efficient liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (UHPLC-ESI-Q-ToF-MS) was used to identify metabolites in the urine of environmentally (n = 28) and occupationally exposed (n = 32) to benzene (mean of 22.1 µg·m-3 and 31.8 µg·m-3, respectively). Non-targeted metabolomics analysis by PLS-DA revealed nine urinary metabolites discriminating between groups and statistically correlated with oxidative damage (MDA, thiol) and genetic material (chromosomal aberrations) induced by the hydrocarbon. The analysis of metabolic pathways revealed important alterations in lipid metabolism. These results point to the involvement of alterations in lipid metabolism in the mechanisms of cytotoxic and genotoxic action of benzene. Furthermore, this study proves the potential of metabolomics to provide relevant information to understand the biological response to exposure to xenobiotics and identify early effect biomarkers.

4.
Article in English | MEDLINE | ID: mdl-31242656

ABSTRACT

Environmental and occupational exposure to benzene from fuels is a major cause for concern for national and international authorities, as benzene is a known carcinogen in humans and there is no safe limit for exposure to carcinogens. The objective of this study was to evaluate the genotoxic effects of chronic occupational exposure to benzene among two groups of workers: filling station workers (Group I) and security guards working at vehicles entrances (Group II), both on the same busy highway in Rio de Janeiro, Brazil. Sociodemographic data on the workers were evaluated; the concentration of benzene/toluene (B/T) in atmospheric air and individual trans,trans-muconic acid (ttMA) and S-phenylmercapturic acid (S-PMA) were measured; oxidative stress was analyzed by catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), thiol groups (THIOL) and malondialdehyde (MDA); genotoxicity was measured by metaphases with chromosomal abnormalities (MCA) and nuclear abnormalities, comet assay using the enzyme formamidopyrimidine DNA glycosylase (C-FPG), and methylation of repetitive element LINE-1, CDKN2B and KLF6 genes. Eighty-six workers participated: 51 from Group I and 35 from Group II. The B/T ratio was similar for both groups, but Group I had greater oscillation of benzene concentrations because of their work activities. No differences in ttMA and S-PMA, and no clinical changes were found between both groups, but linearity was observed between leukocyte count and ttMA; and 15% of workers had leukocyte counts less than 4.5 × 109 cells L-1, demanding close worker's attention. No differences were observed between the two groups for THIOL, MDA, MCA, or nuclear abnormalities. A multiple linear relationship was obtained for the biomarkers MCA and C-FPG. A significant correlation was found between length of time in current job and the biomarkers C-FPG, MCA, GST, and MDA. Although both populations had chronic exposure to benzene, the filling station workers were exposed to higher concentrations of benzene during their work activities, indicating an increased risk of DNA damage.


Subject(s)
Air Pollutants, Occupational/toxicity , Benzene/toxicity , Carcinogens/toxicity , Occupational Exposure/adverse effects , Acetylcysteine/analogs & derivatives , Acetylcysteine/urine , Adolescent , Adult , Air Pollutants, Occupational/analysis , Benzene/analysis , Biomarkers/blood , Biomarkers/urine , Brazil , Carcinogens/analysis , Chromosome Aberrations , Comet Assay , DNA Damage , Environmental Monitoring , Female , Glutathione Transferase/blood , Humans , Male , Malondialdehyde/blood , Middle Aged , Occupational Exposure/analysis , Oxidative Stress/drug effects , Toluene/analysis , Young Adult
5.
Int J Environ Res Public Health ; 11(1): 507-26, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24380980

ABSTRACT

Phthalates used as plasticizers in the manufacture of household containers can potentially be transferred to foods that are stored or heated in these plastic containers. Phthalates are endocrine disruptor compounds (EDC) and are found in very low concentrations in foods, thus, highly sensitive analytical techniques are required for their quantification. This study describes the application of a new method developed for analyzing the migration of dibutylphthalate (DBP) and benzylbutylphthalate (BBP) from plastic food containers into liquid food simulants. This new method employs the technique of solid phase microextraction cooled with liquid nitrogen. The analysis was conducted by gas chromatography/mass spectrometry (GC/MS) using a polyacrylate fiber. Ultrapure water was used as a simulant for liquids foods, and both new and used plastic containers were placed in a domestic microwave oven for different periods of time at different power levels. The limits of detection for DBP and BBP were 0.08 µg/L and 0.31 µg/L, respectively. BBP was not found in the samples that were analyzed. DBP was found in concentrations ranging from

Subject(s)
Dibutyl Phthalate/analysis , Food Analysis/methods , Microwaves , Phthalic Acids/analysis , Plastics/radiation effects , Endocrine Disruptors/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...