Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Cytokine ; 184: 156753, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299102

ABSTRACT

INTRODUCTION: Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that have been linked to a number of health outcomes, including those related to immune dysfunction. However, there are limited numbers of epidemiological-based studies that directly examine the association between PFAS exposure and immune responses. METHODS: In this cross-sectional study nested in the California Teachers Study cohort, we measured nine PFAS analytes in serum. Of the 9 analytes, we further evaluated four (PFHxS [perfluorohexane sulfonate], PFNA [perfluorononanoic acid], PFOA [perfluorooctanoic acid], PFOS [perfluorooctanesulfonic acid]) that had detection levels of > 80 %, in relation to 16 systemic inflammatory/immune markers and corresponding immune pathways (Th1 [pro-inflammatory/macrophage activation], B-cell activation, and T-cell activation). Study participants (n = 722) were female, completed a questionnaire regarding various health measures and behaviors, and donated a blood sample between 2013-2016. The association between PFAS analytes and individual immune markers and pathways were evaluated by calculating odds ratios (OR) and 95 % confidence intervals (CI) in a logistic regression model. PFAS analytes were evaluated both as a dichotomous exposure (above or below the respective median) and as a continuous variable (per 1 unit increase [ng/mL]). RESULTS: The prevalence of detecting any PFAS analyte rose with increasing age, with the highest PFAS prevalence observed among those aged 75 + years and the lowest PFAS prevalence observed among those aged 40-49 years (study participant age range: 40-95 years). Significant associations with BAFF (B-cell activating factor) levels above the median were observed among participants with elevated (defined as above the median) levels of PFHxS (OR=1.53), PFOA (OR=1.43), and PFOS (OR=1.40). Similarly, there were statistically significant associations between elevated levels of PFHxS and TNFRII (tumor necrosis factor receptor 2) levels (OR=1.78) and IL2Rα (interleukin 2 receptor subunit alpha) levels (OR=1.48). We also observed significant inverse associations between elevated PFNA and sCD14 (soluble cluster of differentiation 14) (OR=0.73). No significant associations were observed between elevated PFNA and any immune marker. Evaluation of PFAS exposures as continuous exposures in association with dichotomized cytokines were generally consistent with the dichotomized associations. CONCLUSIONS: PFAS exposure was associated with altered levels of circulating inflammatory/immune markers; the associations were specific to PFAS analyte and immune marker. If validated, our results may suggest potential immune mechanisms underlying associations between the different PFAS analytes and adverse health outcomes.

2.
Int J Hyg Environ Health ; 262: 114430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39205349

ABSTRACT

BACKGROUND: The burden of pediatric asthma and other allergic diseases is not evenly distributed among United States populations. OBJECTIVE: To determine whether urinary biomarkers are associated with asthma morbidity, and if associations vary by child race, ethnicity and sex. METHODS: This study includes n = 152 children with physician-diagnosed asthma who participated in the School Inner-City Asthma Intervention Study (SICAS-2). Metabolites of phenol, paraben, polycyclic aromatic hydrocarbons, and phthalate analytes were analyzed from urine samples collected at baseline. Asthma symptom days over the past 2 weeks were dichotomized to no asthma symptom days or any asthma symptom days. Cross-sectional regression models were adjusted for age, sex, number of colds, household income, prescription control, race and ethnicity, body mass index (BMI) percentile, and smoke exposure. Weighted quantile sum regression was used to analyze each chemical class and a total mixture effect, controlling for the same covariates. Analyses were conducted with the assistance of the National Institute of Environmental Health Sciences Children's Health Exposure Analysis Resource (CHEAR). RESULTS: Participants were mostly Hispanic/Latino and low income with an average age of 7.83 years and the average maximum asthma symptom days over the past two weeks of 2.13 (standard deviation: 3.56). The maximum concentrations indicate extreme values for several chemicals, including bisphenol-3, 2,5-dichlorophenol, propyl and methyl parabens, triclosan, methyl paraben and cotinine. We found a significant interaction effect and differing contributions of analytes for children with allergen sensitivity versus those that did not. For stratified analyses assessing effect modification by child race and ethnicity, weighted quantile sum interaction models showed reduced odds of asthma symptoms to a greater magnitude in children of other races and ethnicities compared to Black, Non-Hispanic children. CONCLUSIONS: Preliminary analyses of the association between environmental chemical exposure and asthma symptoms among inner-city children revealed an inverse association, which may be due to personal care and medication use and can be understood further in future analyses. Beneficial effects were detected for most of the chemicals.


Subject(s)
Asthma , Biomarkers , Environmental Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Asthma/urine , Asthma/epidemiology , Male , Female , Biomarkers/urine , Child , Environmental Exposure/analysis , Environmental Exposure/adverse effects , Polycyclic Aromatic Hydrocarbons/urine , Polycyclic Aromatic Hydrocarbons/adverse effects , Phthalic Acids/urine , Parabens/analysis , Environmental Pollutants/urine , Adolescent , Cross-Sectional Studies , Urban Population , Phenols/urine , Schools
3.
medRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947077

ABSTRACT

Background and Aims: Scarce knowledge about the impact of metabolism-disrupting chemicals (MDCs) on liver injury limits opportunities for intervention. We evaluated pregnancy MDC-mixture associations with liver injury and effect modification by folic acid (FA) supplementation in mother-child pairs. Methods: We studied ∼200 mother-child pairs from the Mexican PROGRESS cohort, with measured 43 MDCs during pregnancy (estimated air pollutants, blood/urine metals or metalloids, urine high- and low-molecular-weight phthalate [HMWPs, LMWPs] and organophosphate-pesticide [OP] metabolites), and serum liver enzymes (ALT, AST) at ∼9 years post-parturition. We defined liver injury as elevated liver enzymes in children, and using established clinical scores for steatosis and fibrosis in mothers (i.e., AST:ALT, FLI, HSI, FIB-4). Bayesian Weighted Quantile Sum regression assessed MDC-mixture associations with liver injury outcomes. We further examined chemical-chemical interactions and effect modification by self-reported FA supplementation. Results: In children, many MDC-mixtures were associated with liver injury outcomes. Per quartile HMWP-mixture increase, ALT increased by 10.1% (95%CI: 1.67%, 19.4%) and AST by 5.27% (95% CI: 0.80%, 10.1%). LMWP-mixtures and air pollutant-mixtures were associated with higher AST and ALT, respectively. Air pollutant and non-essential metal/element associations with liver enzymes were attenuated by maternal cobalt blood concentrations ( p -interactions<0.05). In mothers, only the LMWP-mixture was associated with liver injury [OR=1.53 (95%CI: 1.01, 2.28) for HSI>36, and OR=1.62 (95%CI: 1.05, 2.49) for AST:ALT<1]. In mothers and children, most associations were attenuated (null) at FA supplementation≥600mcg/day ( p -interactions<0.05). Conclusions: Pregnancy MDC exposures may increase liver injury risk, particularly in children. These associations may be attenuated by higher FA supplementation and maternal cobalt levels.

4.
Chem Res Toxicol ; 36(11): 1653-1655, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37883806

ABSTRACT

Polyethoxylated tallow amine (POEA) surfactants in glyphosate formulations are understudied. They may constitute greater health risks than glyphosate itself. Lack of validated biomarkers of exposure and metabolism, as well as analytical methods for measuring POEA, limit the study of a formulation's toxicity and associated risk.


Subject(s)
Herbicides , Pulmonary Surfactants , Humans , Surface-Active Agents , Biological Monitoring , Amines , Glyphosate
5.
Environ Int ; 178: 108117, 2023 08.
Article in English | MEDLINE | ID: mdl-37517179

ABSTRACT

OBJECTIVE: Bronchopulmonary dysplasia (BPD) is a serious yet common morbidity of preterm birth. Although prior work suggests a possible role for phthalate exposure in the development of BPD, no study has rigorously evaluated this. Our objective was to determine whether hospital-based phthalate exposure is associated with the development of BPD and to identify developmental windows sensitive to exposure. STUDY DESIGN: This is a prospective multicenter cohort study of 360 preterm infants born at 23-33 weeks gestation participating in the Developmental Impact of NICU Exposures (DINE) cohort. 939 urine specimens collected during the NICU stay were analyzed for biomarkers of phthalate exposure by liquid chromatography with tandem mass spectrometry. The modified Shennan definition was used to diagnose bronchopulmonary dysplasia. Reverse distributed-lag modeling identified developmental windows sensitive to specific phthalate exposure, controlling for relevant covariates including sex and respiratory support. RESULTS: Thirty-five percent of participants were diagnosed with BPD. Exposure to specific phthalate mixtures at susceptible points in preterm infant development are associated with later diagnosis of BPD in models adjusted for use of respiratory support. The weighted influence of specific phthalate metabolites in the mixtures varied by sex. Metabolites of di(2-ethylhexyl) phthalate, a phthalate previously linked to neonatal respiratory support equipment, drove this association, particularly among female infants, at 26- to 30-weeks post-menstrual age. CONCLUSIONS: This is the largest and only multi-site study of NICU-based phthalate exposure and clinical impact yet reported. In well-constructed models accounting for infant sex and respiratory support, we found a significant positive association between ultimate diagnosis of BPD and prior exposure to phthalate mixtures with DEHP predominance at 26- to 30-weeks PMA or 34-36-weeks PMA. This information is critically important as it identifies a previously unrecognized and modifiable contributing factor to BPD.


Subject(s)
Bronchopulmonary Dysplasia , Premature Birth , Infant , Child , Infant, Newborn , Humans , Female , Infant, Premature , Intensive Care Units, Neonatal , Bronchopulmonary Dysplasia/epidemiology , Bronchopulmonary Dysplasia/diagnosis , Cohort Studies , Prospective Studies , Gestational Age
6.
Sci Total Environ ; 873: 162267, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801327

ABSTRACT

OBJECTIVES: Experimental models have demonstrated a link between exposure to perfluoroalkyl substances (PFAS) and decreased fertility and fecundability; however, human studies are scarce. We assessed the associations between preconception plasma PFAS concentrations and fertility outcomes in women. METHODS: In a case-control study nested within the population-based Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO), we measured PFAS in plasma collected in 2015-2017 from 382 women of reproductive age trying to conceive. Using Cox proportional hazards regression (fecundability ratios [FRs]) and logistic regression (odds ratios [ORs]) models, we assessed the associations of individual PFAS with time-to-pregnancy (TTP), and the likelihoods of clinical pregnancy and live birth, respectively, over one year of follow-up, adjusting for analytical batch, age, education, ethnicity, and parity. We used Bayesian weighted quantile sum (BWQS) regression to assess the associations of the PFAS mixture with fertility outcomes. RESULTS: We found a 5-10 % reduction in fecundability per quartile increase of exposure to individual PFAS (FRs [95 % CIs] for clinical pregnancy = 0.90 [0.82, 0.98] for PFDA; 0.88 [0.79, 0.99] for PFOS; 0.95 [0.86, 1.06] for PFOA; 0.92 [0.84, 1.00] for PFHpA). We observed similar decreased odds of clinical pregnancy (ORs [95 % CIs] = 0.74 [0.56, 0.98] for PFDA; 0.76 [0.53, 1.09] for PFOS; 0.83 [0.59, 1.17] for PFOA; 0.92 [0.70, 1.22] for PFHpA) and live birth per quartile increases of individual PFAS and the PFAS mixture (ORs [95 % CIs] = 0.61 [0.37, 1.02] for clinical pregnancy, and 0.66 [0.40, 1.07] for live birth). Within the PFAS mixture, PFDA followed by PFOS, PFOA, and PFHpA were the biggest contributors to these associations. We found no evidence of association for PFHxS, PFNA, and PFHpS and the fertility outcomes examined. CONCLUSIONS: Higher PFAS exposures may be associated with decreased fertility in women. The potential impact of ubiquitous PFAS exposures on infertility mechanisms requires further investigation.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Pregnancy , Child , Humans , Female , Case-Control Studies , Bayes Theorem , Time-to-Pregnancy
7.
Environ Res ; 217: 114793, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36414110

ABSTRACT

Environmental research often relies on urinary biomarkers which require dilution correction to accurately measure exposures. Specific gravity (SG) and creatinine (UCr) are commonly measured urinary dilution factors. Epidemiologic studies may assess only one of these measures, making it difficult to pool studies that may otherwise be able to be combined. Participants from the National Health and Nutrition Examination Survey 2007-2008 cycle were used to perform k-fold validation of a nonlinear model estimating SG from UCr. The final estimated model was applied to participants from the School Inner-City Asthma Intervention Study, who submitted urinary samples to the Children's Health Exposure Analysis Resource. Model performance was evaluated using calibration metrics to determine how closely the average estimated SG was to the measured SG. Additional models, with interaction terms for age, sex, body mass index, race/ethnicity, relative time of day when sample was collected, log transformed 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and asthma status were estimated and assessed for improvement. The association between monobenzyl phthalate (MBZP) and asthma symptom days, controlling for measured UCr, measured SG, and each estimated SG were compared to assess validity of the estimated SG. The model estimating SG from UCr alone, resulted in a beta estimate of 1.10 (95% CI: 1.01, 1.19), indicating agreement between model-predicted SG and measured SG. Inclusion of age and sex in the model improved estimation (ß = 1.06, 95% CI: 0.98, 1.15). The full model accounting for all interaction terms with UCr resulted in the best agreement (ß = 1.01, 95% CI: 0.93,1.09). Associations between MBZP and asthma symptoms days, controlling for each estimated SG, were within the range of effect estimates when controlling for measured SG and measured UCr (Rate ratios = 1.28-1.34). Our nonlinear modeling provides opportunities to estimate SG in studies that measure UCr or vice versa, enabling data pooling despite differences in urine dilution factors.


Subject(s)
Nonlinear Dynamics , Humans , Child , Specific Gravity , Nutrition Surveys , Creatinine , Body Mass Index
8.
Environ Res ; 219: 115067, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36528042

ABSTRACT

BACKGROUND: Perfluoroalkylated substances (PFAS) are man-made, persistent organic compounds with immune-modulating potentials. Given that pregnancy itself represents an altered state of immunity, PFAS exposure-related immunotoxicity is an important environmental factor to consider in SARS-CoV-2 infection during pregnancy as it may further affect humoral immune responses. AIM: To investigate the relationship between maternal plasma PFAS concentrations and SARS-CoV-2 antibody levels in a NYC-based pregnancy cohort. METHODS: Maternal plasma was collected from 72 SARS-CoV-2 IgG + participants of the Generation C Study, a birth cohort established at the beginning of the COVID-19 pandemic in New York City. Maternal SARS-CoV-2 anti-spike IgG antibody levels were measured using ELISA. A panel of 16 PFAS congeners were measured in maternal plasma using a targeted UHPLC-MS/MS-based assay. Spearman correlations and linear regressions were employed to explore associations between maternal IgG antibody levels and plasma PFAS concentrations. Weighted quantile sum (WQS) regression was also used to evaluate mixture effects of PFAS. Models were adjusted for maternal age, gestational age at which SARS-CoV-2 IgG titer was measured, COVID-19 vaccination status prior to IgG titer measurement, maternal race/ethnicity, parity, type of insurance and pre-pregnancy BMI. RESULTS: Our study population is ethnically diverse with an average maternal age of 32 years. Of the 16 PFAS congeners measured, nine were detected in more than 60% samples. Importantly, all nine congeners were negatively correlated with SARS-CoV-2 anti-spike IgG antibody levels; n-PFOA and PFHxS, PFHpS, and PFHxA reached statistical significance (p < 0.05) in multivariable analyses. When we examined the mixture effects using WQS, a quartile increase in the PFAS mixture-index was significantly associated with lower maternal IgG antibody titers (beta [95% CI] = -0.35 [-0.52, -0.17]). PFHxA was the top contributor to the overall mixture effect. CONCLUSIONS: Our study results support the notion that PFAS, including short-chain emerging PFAS, act as immunosuppressants during pregnancy. Whether such compromised immune activity leads to downstream health effects, such as the severity of COVID-19 symptoms, adverse obstetric outcomes or neonatal immune responses remains to be investigated.


Subject(s)
COVID-19 , Fluorocarbons , Adult , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Fluorocarbons/toxicity , Immunoglobulin G , Pandemics , SARS-CoV-2 , Tandem Mass Spectrometry
10.
Sci Total Environ ; 850: 157830, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35944631

ABSTRACT

In this study, we use advanced growth modeling techniques and the rich biospecimen and data repositories of the NICU Hospital Exposures and Long-Term Health (NICU-HEALTH) study to assess the impact of NICU-based phthalate exposure on extrauterine growth trajectories between birth and NICU discharge. Repeated holdout weighed quantile sum (WQS) regression was used to assess the effect of phthalate mixtures on the latency to first growth spurt and on the rate of first growth spurt. Further, we assessed sex as an effect modifier of the relationship between a phthalate mixture and both outcomes. Nine phthalate metabolites, mono-ethyl phthalate (MEP), mono-benzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-(3-carboxypropyl) phthalate (MCPP), mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were measured in weekly urine specimens from 101 NICU-HEALTH participants between birth and the first growth spurt. Phthalate levels varied by species but not by infant sex, and decreased over the course of the NICU hospitalization as presented in detail in Stroustrup et al., 2018. There was evidence of nonlinearity when assessing the effect of phthalates on latency to first growth spurt. Above a threshold level, a higher phthalate mixture with dominant contributors MCPP, MBzP, and MEP predicted a shorter latency to the first inflection point, or an earlier growth spurt. A higher phthalate mixture with dominant contributors MECPP, MEHHP, and MEOHP was associated with an increased rate of growth. Results of both models were clearly different for boys and girls, consistent with other studies showing the sexually dimorphic impact of early life phthalate exposure. These results suggest that growth curve modeling facilitates evaluation of discrete periods of rapid growth during the NICU hospitalization and exposure to specific phthalates during the NICU hospitalization may both alter the timing of the first growth spurt and result in more rapid growth in a sexually dimorphic manner.


Subject(s)
Environmental Pollutants , Phthalic Acids , Environmental Exposure , Female , Hospitalization , Hospitals , Humans , Infant, Newborn , Infant, Premature , Intensive Care Units, Neonatal , Male , Phthalic Acids/metabolism , Phthalic Acids/toxicity
11.
Sci Total Environ ; 848: 157493, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35878846

ABSTRACT

Phthalate exposure is widespread, and studies suggest an adverse relationship with asthma morbidity, including some support for oxidative stress as an underlying pathophysiological mechanism. Urinary phthalate metabolites have been associated with biomarkers of oxidative stress, but data are few in children diagnosed with asthma. We used participant data from the Home Air in Agriculture Pediatric Intervention Trial (HAPI) to examine longitudinal relationships between phthalates and oxidative stress in a cohort of Latino children with asthma residing in an agricultural community. We used linear mixed-effects models to estimate associations between 11 urinary phthalate metabolites (and one summed measure of di-2-ethylhexyl phthalate (DEHP) metabolites, ∑DEHP) and two urinary biomarkers of oxidative stress: a biomarker of lipid peroxidation via measure of 8-isoprostane and a biomarker of DNA/RNA oxidative damage via combined measure of 8-hydroxydeoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), and 8-hydroxyguanine. Seventy-nine participants provided 281 observations. In covariate-adjusted models, we observed significant positive relationships between all phthalate metabolites and 8-isoprostane, effect sizes ranging from a 9.3 % (95 % CI: 4.2 %-14.7 %) increase in 8-isoprostane for each 100 % increase (i.e., doubling) of mono-(carboxy-isooctyl) phthalate (MCIOP), to a 21.0 % (95 % CI: 14.3 %-28.2 %) increase in 8-isoprostane for each doubling of mono-n-butyl phthalate (MNBP). For each doubling of mono-(carboxy-isononyl) phthalate (MCINP) and mono-ethyl phthalate (MEP), the DNA/RNA oxidative damage biomarker increased by 6.0 % (95 % CI: 0.2 %-12.2 %) and 6.5 % (95 % CI: 1.4 %-11.9 %), respectively. In conclusion, we provide unique data suggesting phthalate exposure is positively associated with oxidative stress in children with asthma. Our repeat measures provide novel identification of a consistent effect of phthalates on oxidative stress in children with asthma via lipid peroxidation. Confirmation in future studies of children with asthma is needed to enhance understanding of the role of phthalates in childhood asthma morbidity.


Subject(s)
Asthma , Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , 8-Hydroxy-2'-Deoxyguanosine , Agriculture , Biomarkers/metabolism , Child , DNA , Environmental Exposure/analysis , Environmental Pollutants/metabolism , Humans , Oxidative Stress , Phthalic Acids/urine , RNA/metabolism
12.
Birth Defects Res ; 114(14): 797-804, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35686682

ABSTRACT

BACKGROUND: Prenatal alcohol exposure (PAE), leading to fetal alcohol spectrum disorders (FASD), is a serious public health issue in the United States and globally. Diagnosis of FASD is crucial in obtaining appropriate care, but it is not always possible when PAE cannot be documented. METHODS: Deciduous teeth from a child with known PAE and a child with known absence of PAE were analyzed using liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) in a multiple-reaction monitoring mode for direct markers and LC-high resolution MS in positive and negative mode with hydrophilic interaction liquid chromatography and reverse-phase chromatography, respectively, for indirect markers. RESULTS: Direct markers of PAE (ethyl glucuronide and ethyl sulfate) were detected in prenatal and postnatal dentine from a case tooth but not from a control tooth. Indirect biomarker analysis indicated a dysregulation of amino acids and an increase in cholesterol sulfate in the case compared to the control tooth. CONCLUSIONS: This proof-of-concept study demonstrates for the first time that direct biomarkers of PAE are detectable and measurable in deciduous teeth which begin forming in utero and are typically naturally shed between 5 and 12 years of age. Further examination of these novel biomarkers may allow diagnosis of FASD where documentation of PAE is otherwise unavailable. Furthermore, because teeth grow incrementally, defined growth zones can be sampled allowing for identification of gestational timing of PAE to help better understand mechanisms underlying alcohol's disruption of perinatal development.


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Biomarkers , Child , Chromatography, Liquid , Female , Fetal Alcohol Spectrum Disorders/metabolism , Humans , Infant , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Tooth, Deciduous
13.
Anal Bioanal Chem ; 414(19): 5943-5966, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35754089

ABSTRACT

Epidemiological studies often call for analytical methods that use a small biospecimen volume to quantify trace level exposures to environmental chemical mixtures. Currently, as many as 150 polar metabolites of environmental chemicals have been found in urine. Therefore, we developed a multi-class method for quantitation of biomarkers in urine. A single sample preparation followed by three LC injections was optimized in a proof-of-approach for a multi-class method. The assay was validated to quantify 50 biomarkers of exposure in urine, belonging to 7 chemical classes and 16 sub-classes. The classes represent metabolites of 12 personal care and consumer product chemicals (PCPs), 5 polycyclic aromatic hydrocarbons (PAHs), 5 organophosphate flame retardants (OPFRs), 18 pesticides, 5 volatile organic compounds (VOCs), 4 tobacco alkaloids, and 1 drug of abuse. Human urine (0.2 mL) was spiked with isotope-labeled internal standards, enzymatically deconjugated, extracted by solid-phase extraction, and analyzed using high-performance liquid chromatography-tandem mass spectrometry. The methanol eluate from the cleanup was split in half and the first half analyzed for PCPs, PAH, and OPFR on a Betasil C18 column; and pesticides and VOC on a Hypersil Gold AQ column. The second half was analyzed for tobacco smoke metabolites and a drug of abuse on a Synergi Polar RP column. Limits of detection ranged from 0.01 to 1.0 ng/mL of urine, with the majority ≤0.5 ng/mL (42/50). Analytical precision, estimated as relative standard deviation of intra- and inter-batch uncertainty, variabilities, was <20%. Extraction recoveries ranged from 83 to 109%. Results from the optimized multi-class method were qualified in formal international proficiency testing programs. Further method customization options were explored and method expansion was demonstrated by inclusion of up to 101 analytes of endo- and exogenous chemicals. This exposome-scale assay is being used for population studies with savings of assay costs and biospecimens, providing both quantitative results and the discovery of unexpected exposures.


Subject(s)
Flame Retardants , Pesticides , Biomarkers/urine , Environmental Exposure/analysis , Flame Retardants/analysis , Humans , Pesticides/analysis , Tandem Mass Spectrometry/methods
14.
Int J Hyg Environ Health ; 243: 113954, 2022 06.
Article in English | MEDLINE | ID: mdl-35588565

ABSTRACT

Phthalates are a class of widely used synthetic chemicals found in commonly used materials and products. Epidemiological studies suggest phthalate exposure is associated with asthma outcomes, though most studies have not investigated phthalates as triggers of exacerbations in children diagnosed with asthma. This study used data from the Home Air in Agriculture Pediatric Intervention Trial (HAPI) to examine relationships between phthalate exposure and outcomes related to childhood asthma exacerbation. We used measures of phthalate metabolites and respiratory health measures including fractional exhaled nitric oxide (FENO), the Asthma Control Test (ACT), caregiver report of symptoms, and urinary leukotriene E4 (uLTE4) to estimate longitudinal associations using mixed effects models, adjusted for covariates. For 100% (i.e., doubling) increases in mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-2-ethylhexyl phthalate (MEHP), and mono-ethyl phthalate (MEP), concentrations of FENO increased by 8.7% (95% CI: 0.7-17.3), 7.2% (95% CI: 0.0-14.9), and 6.4% (95% CI: 0.0-13.3), respectively. All phthalate metabolites demonstrated associations with uLTE4, effect sizes ranging from an 8.7% increase in uLTE4 (95% CI: 4.3-12.5) for a 100% increase in MEHP to an 18.1% increase in uLTE4 (95% CI: 13.3-23.1) for a 100% increase in MNBP. In models of caregiver report of symptoms, no phthalate metabolites were significantly associated in primary models. No phthalate metabolites were associated with standardized ACT score. Our results suggest urinary phthalate metabolites are significant predictors of inflammatory biomarkers related to asthma exacerbation in children but not child and caregiver report of airway symptomatology.


Subject(s)
Asthma , Environmental Pollutants , Phthalic Acids , Agriculture , Asthma/epidemiology , Child , Environmental Exposure , Environmental Pollutants/urine , Hispanic or Latino , Humans , Phthalic Acids/urine , Washington
15.
Environ Health ; 21(1): 1, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34980119

ABSTRACT

BACKGROUND: Data on pediatric asthma morbidity and effective environmental interventions in U.S. agricultural settings are few. We evaluated the effectiveness of HEPA air cleaners on asthma morbidity among a cohort of rural Latino children. METHODS: Seventy-five children with poorly controlled asthma and living in non-smoking homes were randomly assigned to asthma education alone or along with HEPA air cleaners placed in their sleeping area and home living room. The Asthma Control Test (ACT) score, asthma symptoms in prior 2 weeks, unplanned clinical utilization, creatinine-adjusted urinary leukotriene E4 (uLTE4 [ng/mg]), and additional secondary outcomes were evaluated at baseline, six, and 12 months. Group differences were assessed using multivariable-adjusted generalized estimating equations. Incident rate ratios of ever experiencing the metrics of poorer asthma health during follow-up (suboptimal asthma management) were estimated using Poisson regression models in secondary analysis. RESULTS: Mean child age was 9.2 and 8.6 years in intervention and control groups, respectively, and two-thirds of participants were male. Primary analysis of repeated measures of ACT score did not differ between groups (HEPA group mean change compared to controls 10% [95% CI: - 12-39%]). A suggestion of greater decrease in uLTE4 (ng/mg creatinine) was observed (- 10% [95% CI: - 20 -1%]). Secondary analysis showed children with HEPAs were less likely to have an ACT score meeting a clinically defined cutoff for poorly controlled asthma using repeated measures (IRR: 0.45 [95% CI: 0.21-0.97]). In Poisson models, intervention participants had reduced risk of ever meeting this cutoff (IRR: 0.43 [95% CI: 0.21-0.89]), ever having symptoms in the past 2 weeks (IRR: 0.71 [95% CI: 0.52-0.98]), and lower risk of any unplanned clinical utilization (IRR: 0.35 [95% CI: 0.13-0.94]) compared to control participants. DISCUSSION: The HAPI study showed generally improved outcomes among children in the HEPA air cleaner group. However, primary analyses did not meet statistical significance and many outcomes were subjective (self-report) in this unblinded study, so findings must be interpreted cautiously. HEPA air cleaners may provide additional benefit for child asthma health where traditional asthmagens (traffic, tobacco smoke) are not prominent factors, but larger studies with more statistical power and blinded designs are needed. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04919915 . Date of retrospective registration: May 19, 2021.


Subject(s)
Air Filters , Asthma , Agriculture , Asthma/epidemiology , Asthma/prevention & control , Child , Female , Hispanic or Latino , Humans , Male , Morbidity , Retrospective Studies
16.
Sci Total Environ ; 820: 153249, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35065119

ABSTRACT

Despite the unequal burden of environmental exposures borne by racially minoritized communities, these groups are often underrepresented in public health research. Here, we examined racial/ethnic disparities in exposure to metals among a multi-ethnic sample of pregnant women. The sample included women enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort (N = 382). Urinary metal concentrations (arsenic [As], barium [Ba], cadmium [Cd], cesium [Cs], chromium [Cr], lead [Pb], antimony [Sb]) were measured during mid-pregnancy and information on individual- and neighborhood-level characteristics was ascertained during an in-person interview and from publicly available databases, respectively. Linear regression was used to examine individual and neighborhood characteristics in relation to metal concentrations. Black/Black-Hispanic women had Cd, Cr, Pb, and Sb levels that were 142.0%, 10.9%, 35.0%, and 32.1% higher than White, non-Hispanic women, respectively. Likewise, White-Hispanic women had corresponding levels that were 141.5%, 108.2%, 59.9%, and 38.3% higher. These same metals were also higher among women residing in areas with higher crime, higher diversity, lower educational attainment, lower household income, and higher poverty. Significant disparities in exposure to metals exist and may be driven by neighborhood-level factors. Exposure to metals for pregnant women can be especially harmful. Understanding exposure inequalities and identifying factors that increase risk can help inform targeted public health interventions.


Subject(s)
Environmental Exposure/adverse effects , Ethnicity , Health Status Disparities , Metals, Heavy/adverse effects , Pregnant Women , Racial Groups , Female , Hispanic or Latino , Humans , New England , Pregnancy , Residence Characteristics , United States
17.
Environ Res ; 204(Pt C): 112276, 2022 03.
Article in English | MEDLINE | ID: mdl-34717944

ABSTRACT

BACKGROUND: Exposure to low-dose toxic metals in the environment is ubiquitous. Several murine studies have shown metals induce anxiety-like behaviors, and mechanistic research supports that metals disrupt neurotransmitter signaling systems implicated in the pathophysiology of anxiety. In this study, we extend prior research by examining joint exposure to six metals in relation to maternal anxiety symptoms during pregnancy. METHODS: The sample includes 380 participants enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort. Spot urine was collected during pregnancy (mean ± standard deviation: 31.1 ± 6.1 weeks), and concentrations of six metals (barium [Ba], cadmium [Cd], chromium [Cr], cesium [Cs], lead [Pb], antimony [Sb]) were measured by Inductively Coupled Plasma - Mass Spectrometry. Trait anxiety symptoms were measured during pregnancy using a short version of the Spielberger State Trait Anxiety Inventory (STAI-T) and information on covariates was collected by questionnaire. We used weighted quantile sum (WQS) regression as the primary modeling approach to examine metals, treated as a mixture, in relation to higher (≥20) vs. lower anxiety symptoms while adjusting for urinary creatinine and key sociodemographic variables. RESULTS: The sample is socioeconomically and racially/ethnically diverse. Urinary metal concentrations were log-normally distributed and 25% of the sample had an STAI-T score ≥20. Joint exposure to metals was associated with elevated anxiety symptoms (ORWQS = 1.56, 95% CI: 1.24, 1.96); Cd (61.8%), Cr (14.7%), and Cs (12.7%) contributed the greatest weight to the mixture effect. CONCLUSION: Exposure to metals in the environment may be associated with anxiety symptoms during pregnancy. This is a public health concern, as anxiety disorders are highly prevalent and associated with significant co-morbidities, especially during pregnancy when both the mother and developing fetus are susceptible to adverse health outcomes.


Subject(s)
Metals, Heavy , Metals , Animals , Antimony , Anxiety/chemically induced , Anxiety/epidemiology , Anxiety Disorders , Cadmium/toxicity , Female , Humans , Mice , Pregnancy
18.
Chemosphere ; 277: 130355, 2021 08.
Article in English | MEDLINE | ID: mdl-34381285

ABSTRACT

Bisphenol A (BPA)-free plastic products are widely available. Transient BPA release has been reported in Tritan drinking bottles. This study assessed the effectiveness of common consumer washing methods in removing BPA contamination in Tritan bottles using both ELISA and HPLC-MS/MS assays. BPA release was detected in 2 out of 10 kinds of Tritan drinking bottles tested. Average BPA level was 0.493 µg/L in water samples from a type of Tritan kid drinking bottle following 24-hour incubation at room temperature, corresponding to a release rate of 0.015 ng/cm2/h. Of the common consumer cleaning methods identified in an informal survey, dishwashing was the most effective method that significantly reduced, even eliminated BPA release from the tested BPA-positive Tritan bottles, while rinsing with water and handwashing with soap and water were ineffective. The bioactivity of the leached BPA was confirmed using a rodent cardiac myocyte acute exposure model and an invertebrate 7-day exposure model. The BPA release is possibly the result of surface contamination in the manufacturing process. As a case study, our result may be informative for general consumer practice and for better quality control by the manufactures.


Subject(s)
Benzhydryl Compounds , Tandem Mass Spectrometry , Phenols , Plastics
19.
Environ Epidemiol ; 5(2): e147, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33870019

ABSTRACT

Prenatal exposure to metals has been associated with a range of adverse neurocognitive outcomes; however, associations with early behavioral development are less well understood. We examined joint exposure to multiple co-occurring metals in relation to infant negative affect, a stable temperamental trait linked to psychopathology among children and adults. METHODS: Analyses included 308 mother-infant pairs enrolled in the PRISM pregnancy cohort. We measured As, Ba, Cd, Cs, Cr, Pb, and Sb in urine, collected on average during late pregnancy, by ICP-MS. At age 6 months, we assessed negative affect using the Infant Behavior Questionnaire-Revised. We used Weighted Quantile Sum (WQS) regression with repeated holdout validation to estimate the joint association between the metals and global negative affectivity, as well as four subdomains (Fear, Sadness, Distress to Limitations, and Falling Reactivity). We also tested for a sex interaction with estimated stratified weights. RESULTS: In adjusted models, urinary metals were associated with higher scores on the Fear scale (ßWQS = 0.20, 95% confidence interval [CI]: 0.09, 0.30), which captures behavioral inhibition, characterized by startle or distress to sudden changes in the environment and inhibited approach to novelty. We observed a significant sex interaction (95% CI for the cross-product term: -0.19, -0.01), and stratified weights showed girls (61.6%) contributed substantially more to the mixture effect compared with boys (38.4%). Overall, Ba contributed the greatest mixture weight (22.5%), followed by Cs (14.9%) and As (14.6%). CONCLUSIONS: Prenatal exposure to metals was associated with increased infant scores on the temperamental domain of fear, with girls showing particular sensitivity.Key words: Prenatal; Metals; Mixtures; Temperament; Infancy; Negative affect.

20.
Int J Hyg Environ Health ; 234: 113741, 2021 05.
Article in English | MEDLINE | ID: mdl-33773388

ABSTRACT

A consortium of laboratories established under the Children's Health Exposure Analysis Resource (CHEAR) used a multifaceted quality assurance program to promote measurement harmonization for trace organics analyses of human biospecimens that included: (1) participation in external quality assurance (EQA)/proficiency testing (PT) programs; (2) analyses of a urine-based CHEAR common quality control (QC) pool with each analytical batch across all participating laboratories; (3) method validation against NIST Standard Reference Materials® (SRMs); and (4) analyses of blinded duplicates and other project-specific QC samples. The capability of five CHEAR laboratories in organic chemical analysis increased across the 4-year period, and performance in the external PT program improved over time - recent challenges reporting >90% analytes with satisfactory performance. The CHEAR QC pools were analyzed for several classes of organic chemicals including phthalate metabolites and environmental phenols by the participating laboratories with every batch of project samples, which provided a rich source of measurement data for the assessment of intra- and inter-laboratory variance. Within-laboratory and overall variabilities in measurements across laboratories were calculated for target chemicals in urine QC pools; the coefficient of variation (CV) was generally below 25% across batches, studies and laboratories and indicated acceptable analytical imprecision. The suite of organic chemicals analyzed in the CHEAR QC pool was broader than those reported for commercially available reference materials. The accuracy of each of the laboratories' methods was verified through the analysis of several NIST SRMs and was, for example, 97 ± 5.2% for environmental phenols and 95 ± 11% for phthalates. Analysis of blinded duplicate samples showed excellent agreement and reliability of measurements. The intra-class correlation coefficients (ICC) for phthalate metabolites analyzed in various batches across three CHEAR laboratories showed excellent reliability (typically >0.90). Overall, the multifaceted quality assurance protocols followed among the CHEAR laboratories ensured reliable and reproducible data quality for several classes of organic chemicals. Increased participation in external PT programs through inclusion of additional target analytes will further enhance the confidence in data quality.


Subject(s)
Child Health , Laboratories , Biological Monitoring , Child , Humans , Organic Chemicals , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL