Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(1): e0108623, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38099681

ABSTRACT

We report the genome sequences of 31 mycobacteriophages isolated on Mycobacterium smegmatis mc2155 at room temperature. The genomes add to the diversity of Clusters A, B, C, G, and K. Collectively, the genomes include 70 novel protein-coding genes that have no close relatives among the actinobacteriophages.

2.
J Vector Ecol ; 45(2): 321-332, 2020 12.
Article in English | MEDLINE | ID: mdl-33207056

ABSTRACT

Due to climate change-induced alterations of temperature and humidity, the distribution of pathogen-carrying organisms such as ticks may shift. Tick survival is often limited by environmental factors such as dryness, but a predicted hotter and wetter world may allow the expansion of tick ranges. Dermacentor andersoni and D. variabilis ticks are morphologically similar, co-occur throughout the Inland Northwest of Washington State, U.S.A., and both can be injected with pathogenic Rickettsia and Francisella bacteria. Differences in behavior and the potential role of endosymbiotic Rickettsia and Francisella in these ticks are poorly studied. We wanted to measure behavioral and ecological differences between the two species and determine which, if any, Rickettsia and Francisella bacteria - pathogenic or endosymbiotic - they carried. Additionally, we wanted to determine if either tick species may be selected for if the climate in eastern Washington becomes wetter or dryer. We found that D. andersoni is more resistant to desiccation, but both species share similar questing behaviors such as climbing and attraction to bright light. Both also avoid the odor of eucalyptus and DEET but not permethrin. Although both tick species are capable of transmitting pathogenic species of Francisella and Rickettsia, which cause tularemia and Rocky Mountain Spotted Fever, respectively, we found primarily non-pathogenic endosymbiotic strains of Francisella and Rickettsia, and only one tick infected with F. tularensis subspecies holarctica.


Subject(s)
Arachnid Vectors/physiology , Behavior, Animal , Dermacentor/physiology , Francisella/isolation & purification , Rickettsia/isolation & purification , Animals , Arachnid Vectors/microbiology , Dermacentor/microbiology , Female , Male , Rocky Mountain Spotted Fever/transmission , Symbiosis , Tularemia/transmission , Washington
3.
Viruses ; 12(9)2020 09 13.
Article in English | MEDLINE | ID: mdl-32933138

ABSTRACT

Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1-5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1-5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated.


Subject(s)
Antiviral Agents/pharmacology , Flavivirus/drug effects , Fluoroquinolones/pharmacology , Virus Replication/drug effects , Animals , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/pharmacology , Dengue , Dengue Virus/drug effects , Enoxacin/pharmacology , Female , HEK293 Cells , Humans , Male , Mice , Testis/virology , Viral Load , Zika Virus/drug effects
4.
PLoS Negl Trop Dis ; 13(7): e0007473, 2019 07.
Article in English | MEDLINE | ID: mdl-31306420

ABSTRACT

The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.


Subject(s)
Disease Vectors , Viral Envelope Proteins/metabolism , West Nile Fever/virology , West Nile virus/metabolism , Aedes , Amino Acid Motifs , Animals , Chlorocebus aethiops , Culex/virology , Culicidae/virology , Disease Models, Animal , Female , Glycosylation , Hydrogen-Ion Concentration , Mice , Mutation , Phenotype , Sparrows/virology , Vero Cells , Viral Envelope Proteins/genetics , Viremia , Virulence , Virus Replication , West Nile virus/genetics
5.
Emerg Infect Dis ; 22(8): 1353-62, 2016 08.
Article in English | MEDLINE | ID: mdl-27433830

ABSTRACT

Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960-2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.


Subject(s)
West Nile Fever/virology , West Nile virus/genetics , West Nile virus/pathogenicity , Amino Acid Sequence , Animals , Antibodies, Monoclonal , Antibody Specificity , Antigens, Viral/genetics , Australia/epidemiology , Cell Line , Evolution, Molecular , Genome, Viral , Humans , Mice , Virulence , West Nile Fever/epidemiology
6.
Virology ; 476: 54-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25528416

ABSTRACT

RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines.


Subject(s)
Aedes/virology , Dengue Virus/genetics , Dengue/virology , RNA, Small Interfering/genetics , RNA, Viral/genetics , Animals , Base Sequence , Cell Line , Dengue Virus/metabolism , Humans , Molecular Sequence Data , RNA Interference , RNA, Small Interfering/metabolism , RNA, Viral/metabolism
7.
PLoS One ; 9(6): e100802, 2014.
Article in English | MEDLINE | ID: mdl-24971589

ABSTRACT

A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs) following West Nile virus (WNV) infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P) and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs) and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.


Subject(s)
Amino Acid Substitution , Host Specificity , Viral Nonstructural Proteins/genetics , West Nile virus/genetics , Amino Acid Sequence , Animals , Chlorocebus aethiops , Crows/virology , Mice , Molecular Sequence Data , Polymorphism, Single Nucleotide , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Sparrows/virology , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virulence/genetics , West Nile virus/pathogenicity
8.
J Virol Methods ; 195: 76-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24121135

ABSTRACT

To enable in vivo and in vitro competitive fitness comparisons among West Nile viruses (WNV), three reference viruses were marked genetically by site-directed mutagenesis with five synonymous nucleotide substitutions in the envelope gene region of the genome. Phenotypic neutrality of the mutants was assessed experimentally by competitive replication in cell culture and genetic stability of the substituted nucleotides was confirmed by direct sequencing. Luminex(®) technology, quantitative sequencing and quantitative RT-PCR (qRT-PCR) were compared in regard to specificity, sensitivity and accuracy for quantitation of wildtype and genetically marked viruses in mixed samples based on RNA obtained from samples of known viral titers. Although Luminex(®) technology and quantitative sequencing provided semi-quantitative or qualitative measurements, a sequence-specific primer extension approach using a specific reverse primer set in singleplex qRT-PCR demonstrated the best quantitation and specificity in the detection of RNA from wildtype and mutant viruses.


Subject(s)
Alleles , Genetic Markers , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction/methods , Virology/methods , West Nile virus/genetics , Animals , Sensitivity and Specificity , Sequence Analysis/methods
9.
J Gen Virol ; 92(Pt 11): 2523-2533, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21775581

ABSTRACT

The presence of West Nile virus (WNV) was first documented in California, USA, during the summer of 2003, and subsequently the virus has become endemic throughout the state. Sequence analysis has demonstrated that the circulating strains are representative of the North American (WN02) genotype that has displaced the East Coast genotype (NY99). A recent study has indicated that enhanced vector competence at elevated temperatures may have played a role in the displacement of the East Coast genotype by WN02. In the current study, four WN02 strains from California, including an initial 2003 isolate (COAV997), were compared to strain NY99 in growth curve assays in mosquito and duck embryonic fibroblast (DEF) cell lines at differing, biologically relevant temperatures to assess the relative temperature sensitivities of these natural isolates. COAV997 was significantly debilitated in viral replication in DEF cells at 44 °C. Full-length sequence comparison of COAV997 against the NY99 reference strain revealed non-synonymous mutations in the envelope glycoprotein (V159A), non-structural protein 1 (NS1) (K110N) and non-structural protein 4A (NS4A) (F92L), as well as two mutations in the 3' UTR: C→T at nt 10 772 and A→G at nt 10 851. These non-synonymous mutations were introduced into the NY99 viral backbone by site-directed mutagenesis. A mutant containing the NS1-K110N and NS4A-F92L mutations exhibited a debilitated growth phenotype in DEF cells at 44 °C, similar to that of COAV997. One explanation for the subsistence of this genotype is that COAV997 was obtained from an area of California where avian host species might not present elevated temperatures. These data indicate that the NS1 and NS4A mutations identified in some WN02 isolates could reduce thermal stability and impede replication of virus at temperatures observed in febrile avian hosts.


Subject(s)
Virus Replication/radiation effects , West Nile virus/growth & development , West Nile virus/radiation effects , 3' Untranslated Regions , Amino Acid Substitution/genetics , Animals , Cell Line , Culicidae , Ducks , Fibroblasts/virology , Genotype , Molecular Sequence Data , North America , Point Mutation , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Temperature , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL