Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Exp Appl Acarol ; 92(4): 759-775, 2024 May.
Article in English | MEDLINE | ID: mdl-38512422

ABSTRACT

Citrus leprosis is the most important viral disease affecting citrus. The disease is caused predominantly by CiLV-C and is transmitted by Brevipalpus yothersi Baker mites. This study brings some insight into the colonization of B. yothersi in citrus [(Citrus × sinensis (L.) Osbeck (Rutaceae)] previously infested by viruliferous or non-viruliferous B. yothersi. It also assesses the putative role of shelters on the behavior of B. yothersi. Expression of PR1 and PR4 genes, markers of plant defense mechanisms, were evaluated by RT-qPCR to correlate the role of the plant hormonal changes during the tri-trophic virus-mite-plant interplay. A previous infestation with either non-viruliferous and viruliferous mites positively influenced oviposition and the number of adult individuals in the resulting populations. Mite populations were higher on branches that had received a previous mite infestation than branches that did not. There was an increase in the expression of PR4, a marker gene in the jasmonic acid (JA) pathway, in the treatment with non-viruliferous mites, indicating a response from the plant to their feeding. Conversely, an induced expression of PR1, a marker gene in the salicylic acid (SA) pathway, was observed mainly in the treatment with viruliferous mites, which suggests the activation of a plant response against the pathogen. The earlier mite infestation, as well as the presence of leprosis lesions and a gypsum mixture as artificial shelters, all fostered the growth of the B. yothersi populations after the second infestation, regardless of the presence or absence of CiLV-C. Furthermore, it is suggested that B. yothersi feeding actually induces the JA pathway in plants. At the same time, the CiLV-C represses the JA pathway and induces the SA pathway, which benefits the mite vector.


Subject(s)
Citrus sinensis , Mites , Animals , Mites/physiology , Plant Diseases/parasitology , Female , Mite Infestations/veterinary , Mite Infestations/parasitology , Oviposition
2.
Exp Appl Acarol ; 91(4): 603-613, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995027

ABSTRACT

Many mites of the family Eriophyidae are important pests worldwide. In citrus crops, the eriophyid Phyllocoptruta oleivora stands out for the economic losses caused. The pest's injuries cause the darkening of leaves, twigs, and fruits, making them unfit for the fresh fruit market and affecting plant productivity. Another species that causes similar symptoms was described in Brazil recently, the brown citrus rust mite, Tegolophus brunneus. Although studies have not been performed with this species, growers and technicians have attributed the rise in rust damages in Brazil to T. brunneus, affirming that this mite is more aggressive and resistant to acaricides than P. oleivora. In this study, the distribution of T. brunneus in the main Brazilian citrus belt and the differential toxicity of the acaricides sulfur and abamectin were evaluated for both species. Infested fruits were collected from different orchards in many municipalities, covering the main citrus species and cultivars grown, aiming to show the main T. brunneus hosts. It was observed that only plants of Tahiti acid lime (Citrus latifolia) were infested by T. brunneus, whereas P. oleivora infested all citrus cultivars and species evaluated (Citrus spp.). In our study, T. brunneus and P. oleivora were never observed coinfesting the same fruit/leaf or plant. The acute toxicity test of sulfur and abamectin as acaricides showed that T. brunneus has greater tolerance to abamectin than P. oleivora. However, the acute toxicity of sulfur was similar for both species. These results showed T. brunneus specificity to infest Tahiti acid lime, causing important damage to this crop, and suggest that attention should be paid to managing this mite using abamectin.


Subject(s)
Acaricides , Citrus , Mites , Animals , Brazil , Sulfur
3.
Zootaxa ; 5319(2): 263-274, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37518234

ABSTRACT

Brachytydeus juanjosei sp. nov., a new species of Neotropical Tydeidae, is illustrated and described from females, males, and a tritonymph collected from the leaves of a native forest tree, Neltuma piurensis (Fabaceae), from Department of Piura in north-western Peru. The new tydeid mite was found all year long, but more frequently observed during spring in high populations (September/December). A key to the known Peruvian species of the subfamily Tydeinae is provided.

4.
Sci Rep ; 12(1): 8029, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577880

ABSTRACT

The ladybird Eriopis connexa is an important natural enemy of several pest arthropods in agroecosystems. High population of this predator is frequently observed in strawberry and soybean crops associated with spider mites. We used two-sex life table parameters to evaluate under laboratory conditions, the suitability of three species of spider mites (Tetranychus evansi, Tetranychus urticae, Tetranychus ogmophallos), and a species of aphid (Myzus persicae) as a prey for the predator E. connexa. Eriopis connexa completed immature development on all prey species except on T. evansi, in which all individuals of predator died before reaching the pupal stage. Among prey species that allowed the immature development of E. connexa, T. urticae and M. persicae provided a faster development time to the predator. Oviposition days, longevity and fecundity of E. connexa on T. urticae and M. persicae were substantially longer/higher than on T. ogmophallos. Net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) of E. connexa feeding on T. urticae and M. persicae were also higher than those on T. ogmophallos. Based on the overall performance of the ladybird, the order of suitability of prey species was M. persicae > T. urticae > T. ogmophallos > T. evansi.


Subject(s)
Aphids , Coleoptera , Tetranychidae , Animals , Female , Life Tables , Oviposition , Pest Control, Biological , Predatory Behavior
5.
Exp Appl Acarol ; 85(2-4): 191-204, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34739615

ABSTRACT

The overuse of insecticides to control vector insects such as Diaphorina citri Kuwayama in citrus groves has altered the population dynamics of pest mites. Among phytophagous mites, population outbreaks of citrus leprosis mite, Brevipalpus yothersi Baker, have been increasingly intense and frequent in Brazilian citrus groves. Despite the great importance of the B. yothersi mite for citrus production, the lethal and sublethal effects of insecticides on this mite have not yet been studied. Therefore, in this study, the effects of insecticides commonly used for D. citri control on B. yothersi mortality, reproduction, and instantaneous growth rate were assessed. For this, two experiments were carried out, one under controlled conditions and another in a greenhouse. The insecticides tested were beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, pyriproxyfen, and thiamethoxam at 0 (control), 0.0625, 0.125, 0.25, 0.5, 1, and twofold the recommended insecticide concentration for D. citri control. The pyriproxyfen insecticide provided high mortality of B. yothersi even at low concentrations. Furthermore, this insecticide negatively interfered with the reproduction of this mite. Beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, and thiamethoxam, in the tested concentrations, showed low impact on citrus leprosis mite. Regarding the reproduction of the mite, no significant increase in fecundity was observed on B. yothersi females exposed to insecticide residues, regardless of the concentration tested. Therefore, the application of these insecticides in the management of pest insects is unlikely to promote an increase in the citrus leprosis mite population.


Subject(s)
Citrus , Insecticides , Mites , Animals , Fertility , Reproduction
6.
Exp Appl Acarol ; 84(4): 733-753, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34244884

ABSTRACT

Tetranychus urticae Koch (Acari: Tetranychidae) is a major pest species in numerous crops including hop (Humulus lupulus L.). Substantial T. urticae infestation was observed to occur in this recently introduced crop in Brazil. The adoption of less suitable cultivars to the pest species is highly desirable for integrated pest management. We used free-choice trials and two-sex life table analysis to determine the preference and population growth of T. urticae under laboratory conditions using three of hop cultivars currently expanding in Brazil (Mantiqueira, Victoria, and Yakima Gold). We also estimated the density of non-glandular trichomes and lupulin glands found on the abaxial leaf surface of these cultivars and correlated them with performance parameters of T. urticae. Mantiqueira appeared to be the least preferred by adult females for attractiveness and oviposition suggesting existence of antixenosis on this cultivar. Female immature stages developed slower on Yakima Gold and Mantiqueira, but no difference was observed between the latter and Victoria. Fecundity and longevity were significantly lower on Mantiqueira than on Victoria and Yakima Gold. No significant differences were observed among cultivars for intrinsic rate of increase (r), finite rate of increase (λ), and net rate of reproduction (R0), suggesting the absence of antibiosis. Although, lupilin gland densities were higher on Mantiqueira and Yakima Gold than on Victoria, no significant correlations were observed between these defensive traits and performance parameters of T. urticae. However, 30-day population simulations of T. urticae suggest that Yakima Gold is the least susceptible, Mantiqueira is moderately susceptible, and Victoria is highly susceptible.


Subject(s)
Humulus , Tetranychidae , Animals , Female , Life Tables , Oviposition , Reproduction
7.
Exp Appl Acarol ; 79(1): 35-46, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31564008

ABSTRACT

The brown citrus rust mite, Tegolophus brunneus Flechtmann (Acari: Eriophyidae), causes citrus rust, as does Phyllocoptruta oleivora (Ashmead) (Acari: Eriophyidae). As the citrus rust damage has intensified in recent years and T. brunneus has been reported in high population levels in several regions of Brazil, this mite has caused concern to growers and technicians. Because T. brunneus has been little studied and its bioecological characteristics are unknown, this study investigated the biological and demographic parameters of T. brunneus on citrus fruits under laboratory conditions. Our results showed that the egg incubation period and viability were 3.0 and 94.5%, respectively. The larval and nymphal stage durations were 1.1 and 2.8 days, respectively. The development time of the immature stage was 6.9 days, with 92.3% survival. When females and males were maintained together, the sex ratio of offspring was 0.7; virgin females produced only males. The pre-oviposition (from adult emergence to the first egg) and total pre-oviposition (egg-to-egg) periods were 1.6 and 8.5 days, respectively. Fecundity was 8.5 eggs, and female and male longevities were 13.2 and 11.4 days, respectively. The estimate of demographic parameters indicated that the Ro and T of T. brunneus were 6.45 offspring and 13.0 days, and r and λ were 0.142 and 1.153 day-1, respectively. These results suggest that T. brunneus has high growth potential on citrus trees. Therefore, management strategies may be required to reduce the population levels and damage caused by T. brunneus in citrus groves.


Subject(s)
Life History Traits , Mites/physiology , Oviposition , Animals , Citrus , Demography , Female , Larva/growth & development , Larva/physiology , Male , Mites/growth & development , Nymph/growth & development , Nymph/physiology , Population Dynamics , Reproduction
8.
Exp Appl Acarol ; 78(2): 295-314, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31154548

ABSTRACT

The peanut red spider mite, Tetranychus ogmophallos Ferreira and Flechtmann (Acari: Tetranychidae), is an important pest of peanut in Brazil and is considered a quarantine pest in other countries. This study investigates the development, reproduction, survival and life table parameters of T. ogmophallos on five peanut cultivars-three with high levels of oleic acid [high oleic] and recently released: Granoleico, IAC OL 3 and IAC 503; and two regular and previously used by farmers: Runner IAC 886, IAC Tatu ST 3-and two breeding lines (L. 8008 and L. 322) in the growth chamber. There were differences between the developmental times of all immature stages, the oviposition period, fecundity and adult longevity of T. ogmophallos reared on the peanut cultivars and breeding lines. The longest duration of the immature stage and lowest fecundity occurred on cultivars Granoleico and Runner IAC 886, and breeding line L. 322, which also displayed the lowest intrinsic rate of increase (r), finite rate of increase (λ) and net reproductive rate (R0) and the shortest mean generation time (T). The highest fitness occurred on the IAC Tatu ST, IAC OL 3, IAC 503 and L. 8008. Our study shows that peanut cultivars belonging to the group with high oleic trait and recently released (IAC OL 3 and IAC 503) are susceptible to T. ogmophallos, except Granoleico, which is resistant. The regular and previously used cultivar Runner IAC 886 and breeding line L. 322 are resistant to the peanut red spider mite.


Subject(s)
Antibiosis , Arachis/physiology , Tetranychidae/physiology , Animals , Arachis/genetics , Brazil , Female , Fertility , Larva/growth & development , Larva/physiology , Life Tables , Longevity , Male , Nymph/growth & development , Nymph/physiology , Oviposition , Tetranychidae/growth & development
9.
Ecotoxicol Environ Saf ; 176: 339-345, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30953999

ABSTRACT

The acaricidal bioactivity of an oxymatrine-based commercial formulation against Brevipalpus yothersi Baker (Acari: Tenuipalpidae), a vector mite of the Citrus leprosis virus (CiLV), and its impact on predatory mites were assessed. For this purpose, laboratory and field assays using bioacaricide concentrations ranging from 0.5 to 2.0 mg L-1 of oxymatrine were performed during the years from 2015 to 2016. Laboratory results showed that the oxymatrine-based commercial formulation does not cause deleterious effects on B. yothersi eggs; however, it causes high larval mortality. For adult females, the bioacaricide caused high acute toxicity and residual effect for at least 5 days after application. In the field, the bioacaricide exhibited high acaricidal activity against B. yothersi, with efficacy levels similar to that of synthetic acaricide spirodiclofen (48 mg L-1) until 49 days after the application. The application of the bioacaricide did not negatively affect the population levels of phytoseiid predatory mites. Therefore, our results suggest that the oxymatrine-based commercial formulation is an important tool for management of the citrus leprosis mite in citrus groves.


Subject(s)
Acaricides/pharmacology , Alkaloids/pharmacology , Arachnid Vectors/drug effects , Citrus/virology , Mites/drug effects , Quinolizines/pharmacology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Animals , Arachnid Vectors/virology , Female , Larva/drug effects , Larva/virology , Mites/virology , Spiro Compounds/pharmacology
10.
Pest Manag Sci ; 75(7): 1855-1865, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30653814

ABSTRACT

BACKGROUND: Botanical compounds from plant species are known to have pesticidal activity and have been used in integrated pest management programs. The varied spectrum of the pesticidal action of these compounds can also avoid selection of resistance in pest populations. In this study, mixtures of the botanical compounds geraniol, eugenol and cinnamaldehyde were encapsulated in zein nanoparticles to improve their stability and efficiency. Biological effects of the nano-scale formulations of the botanical compounds were evaluated against two agricultural pests: the two-spotted spider mite (Tetranychus urticae) and the soybean looper (Chrysodeixis includes). RESULTS: The formulations were stable over time (120 days) with a high encapsulation efficiency (>90%). Nanoencapsulation also provided protection against degradation of the compounds during storage and led to a decrease in toxicity to non-target organisms. The release of the compounds (especially eugenol and cinnamaldehyde) from the nanoparticles was directly influenced by temperature, and the main mechanism of release was through a diffusion-based process. Nanoencapsulated compounds also showed superior efficiency compared to the emulsified compounds in terms of repellency and insecticidal activity. CONCLUSION: The findings of this study indicate that the convergence of botanical compounds with nano-scale formulation has the potential to improve efficacy for their sustainable use in integrated pest management in agriculture. © 2019 Society of Chemical Industry.


Subject(s)
Acaricides , Insecticides , Moths/drug effects , Nanoparticles/chemistry , Tetranychidae/drug effects , Zein/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Acyclic Monoterpenes , Animals , Cell Line , Cricetulus , Drug Carriers , Eugenol/chemistry , Eugenol/pharmacology , Larva/drug effects , Mice , Temperature , Terpenes/chemistry , Terpenes/pharmacology
11.
J Agric Food Chem ; 66(6): 1330-1340, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29345934

ABSTRACT

Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.


Subject(s)
Cymbopogon/chemistry , Drug Carriers/chemistry , Insect Repellents/pharmacology , Mites/drug effects , Nanoparticles/chemistry , Plant Oils/pharmacology , Zein/chemistry , Acyclic Monoterpenes , Agriculture , Aldehydes/chemistry , Aldehydes/pharmacology , Animals , Drug Compounding , Insect Repellents/chemistry , Mites/physiology , Monoterpenes/chemistry , Monoterpenes/pharmacology , Phaseolus/drug effects , Phaseolus/parasitology , Plant Oils/chemistry , Terpenes/chemistry , Terpenes/pharmacology
12.
Ciênc. rural ; 41(10): 1695-1701, out. 2011. tab
Article in Portuguese | LILACS | ID: lil-601938

ABSTRACT

O objetivo do trabalho foi verificar a influência dos resíduos de calda sulfocálcica sobre a eficiência de acaricidas empregados no controle de Brevipalpus phoenicis. Inicialmente, o experimento foi instalado em um pomar de citros, em que foram selecionadas 10 plantas que continham frutos com verrugose. Realizou-se a aplicação de calda sulfocálcica (8g i.a. L-1 de água) em cinco plantas e as outras cinco plantas permaneceram sem aplicação de produto fitossanitário. Protegeram-se, com copos de plástico transparente de 500mL, 64 frutos nas plantas tratadas com calda e 64 frutos nas plantas não-tratadas, totalizando 128 frutos protegidos. Decorridos 30 dias da aplicação, os frutos foram colhidos e levados para o laboratório. Estes frutos foram parcialmente parafinados, deixando-se em cada fruto uma arena de 2,5cm de diâmetro com verrugose e sem parafina, delimitada com cola entomológica. Em seguida, procedeu-se à aplicação sobre os frutos em Torre de Potter dos seguintes acaricidas nas concentrações expressas em mg de ingrediente ativo por litro de água: propargite a 720mg, óxido de fenbutatina a 400mg, cyhexatin a 250mg, azocyclotin a 250mg, fenpyroximate a 50mg, dicofol a 960mg e dinocap a 738mg e a testemunha sem aplicação de acaricida. Após 1, 7 e 16 dias da aplicação, transferiram-se para cada fruto 10 ácaros B. phoenicis para avaliar a mortalidade. Constatou-se que os resíduos de calda sulfocálcica não prejudicaram a eficiência dos acaricidas avaliados no controle de B. phoenicis.


The objective was to assess the influence of lime sulfur residues on the acaricidal efficiency against Brevipalpus phoenicis mite. Initially, the experiment was conducted in a citrus orchard where 10 plants presenting scab fruits were selected. Secondly, the application of lime sulfur (8mg a.i. L-1 of water) was performed in five plants, and the other five plants remained without application. Next lime sulfur application, 64 fruits in the plants with lime sulfur application were protected with plastic cups and others 64 fruits also were protected in the plants without lime sulfur application with plastic cups. After 30 days of field application, fruits were harvested and transported to the laboratory. These fruits were partially waxed, leaving an arena of approximately 2.5cm in diameter with scab and without paraffin and entrapped with entomological glue. Afterwards, acaricides application were done following the concentration expressed in mg of active ingredient per liter of water: propargite (720mg), fenbutatin oxide (400mg), cyhexatin (250mg), azocyclotin (250mg), fenpyroximate (50mg), dicofol (960mg), dinocap (738mg) and control treatment by using the petri dish-Potter tower method. After 1, 7 and 16 days of application, ten B. phoenicis were transferred per fruit, in order to evaluate their mortality, 24 and 48 hours after the transferences. The lime sulfur residue did not affect the acaricides efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...