Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 60(3): 1375-1388, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32712699

ABSTRACT

PURPOSE: The metabolic benefits of the Mediterranean diet have been largely attributed to its olive oil content. Whether the ingested fat amount is relevant to these effects is not clear. We thus compared the effects of high-fat and normal-fat intake of extra-virgin olive oil (EVOO) on the liver proteome. METHODS: Three groups of mice were fed for 12 weeks with either normal-fat diets containing either soybean oil (control, C) or EVOO (NO) or a high-fat EVOO diet (HO). Body weight and food intake were measured weekly and serum parameters were analyzed. The liver was processed for data-independent acquisition mass spectrometry-based proteomics. The differentially expressed proteins among the groups were submitted to pathway enrichment analysis. RESULTS: The consumption of HO diet reduced food intake and serum triglycerides, while it preserved body weight gain, adiposity, and glycemia. However, it increased serum cholesterol and liver mass. The proteomic analysis showed 98 altered proteins, which were allocated in 27 significantly enriched pathways. The pathway analysis suggested stimulation of mitochondrial and peroxissomal ß-oxidation, and inhibition of lipid synthesis and gluconeogenesis in the HO group. Although the NO group failed to show significant liver proteome alterations, it presented reduced body fat, body weight gain, and serum triglycerides and glucose levels. CONCLUSION: The data indicate that the intake of the HO diet induced hepatic adjustments, which were partially successful in counteracting the detrimental outcomes of a high-fat feeding. Contrastingly, the NO diet had beneficial effects which were not accompanied by significant modifications on hepatic proteome.


Subject(s)
Proteome , Proteomics , Animals , Diet, High-Fat/adverse effects , Liver , Mice , Olive Oil
3.
Front Neurosci ; 12: 557, 2018.
Article in English | MEDLINE | ID: mdl-30233288

ABSTRACT

Menopause-induced changes may include increased incidence of both depression/anxiety and obesity. We hypothesized that behavioral changes that may develop after ovarian failure could be related to neurochemical and metabolic aspects affected by this condition and that high-fat intake may influence these associations. The present study investigated in rats the effects of ovariectomy, either alone or combined with high-fat diets enriched with either lard or fish-oil, on metabolic, behavioral and monoaminergic statuses, and on gene expression of neuropeptides and receptors involved in energy balance and mood regulation. Female rats had their ovaries removed and received either standard chow (OvxC) or high-fat diets enriched with either lard (OvxL) or fish-oil (OvxF) for 8 weeks. The Sham group received only chow diet. Ovariectomy increased feed efficiency and body weight gain and impaired glucose homeostasis and serotonin-induced hypophagia, effects either maintained or even accentuated by the lard diet but counteracted by the fish diet. The OvxL group developed obesity and hyperleptinemia. Regarding components of hypothalamic serotonergic system, both ovariectomy alone or combined with the fish diet increased 5-HT2C expression while the lard diet reduced 5-HT1B mRNA. Ovariectomy increased the anxiety index, as derived from the elevated plus maze test, while both high-fat groups showed normalization of this index. In the forced swimming test, ovariectomy allied to high-lard diet, but not to fish-oil diet, reduced the latency to immobility, indicating vulnerability to a depressive-like state. Linear regression analysis showed hippocampal AgRP to be negatively associated with the anxiety index and hypothalamic AgRP to be positively associated with the latency to immobility. These AgRp gene expression associations are indicative of a beneficial involvement of this neuropeptide on both depression and anxiety measures. The present findings demonstrate metabolic, neurochemical and behavioral alterations after ovaries removal and highlight a positive effect of high-fat feeding on the anxiety-like behavior shown by ovariectomized animals. Since the polyunsaturated ômega-3 intake (fish diet), unlike the saturated fat intake (lard diet), failed to induce deleterious metabolic or neurochemical consequences, further studies are needed focusing on the potential of this dietary component as an adjuvant anxiolytic agent after menopause.

4.
Front Pharmacol ; 8: 605, 2017.
Article in English | MEDLINE | ID: mdl-28928661

ABSTRACT

Menopause is associated with increased risk to develop obesity but the mechanisms involved are not fully understood. We have shown that Ginkgo biloba extract (GbE) improved diet-induced obesity. Since GbE might be effective in the treatment of obesity related to menopause, avoiding the side effects of hormone replacement therapy, we investigated the effect of GbE on hypothalamic systems controlling energy homeostasis. Wistar rats were either ovariectomized (OVX) or Sham-operated. After 2 months, either 500 mg.kg-1 of GbE or vehicle were administered daily by gavage for 14 days. A subset of animals received an intracerebroventricular (i.c.v.) injection of serotonin (300 µg) or vehicle and food intake was measured after 12 and 24 h. Another subset was submitted to in vivo microdialysis and 5-HT levels of the medial hypothalamus were measured by high performance liquid chromatography, before and up to 2 h after the administration of 500 mg.kg-1 of GbE. Additional animals were used for quantification of 5-HT1A, 5-HT1B, 5-HT2C, 5-HTT, and pro-opiomelanocortin hypothalamic protein levels by Western blotting. OVX increased food intake and body weight and adiposity while GbE attenuated these alterations. i.c.v. serotonin significantly reduced food intake in Sham, Sham + GbE, and OVX + GbE groups while it failed to do so in the OVX group. In the OVX rats, GbE stimulated 5-HT microdialysate levels while it reduced hypothalamic 5-HTT protein levels. The results indicate that GbE improved the ovariectomy-induced resistance to serotonin hypophagia, at least in part through stimulation of the hypothalamic serotonergic activity. Since body weight gain is one of the most important consequences of menopause, the stimulation of the serotonergic transmission by GbE may represent a potential alternative therapy for menopause-related obesity.

5.
Lipids Health Dis ; 12: 188, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24369745

ABSTRACT

BACKGROUND: Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. METHODS: Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. RESULTS: The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. CONCLUSIONS: The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding.


Subject(s)
Diet, High-Fat , Fish Oils/administration & dosage , Glucose/metabolism , Prefrontal Cortex/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Biological Transport , Cerebral Ventricles/metabolism , Deoxyglucose/administration & dosage , Energy Intake , Energy Metabolism , Injections, Intraventricular , Male , Microdialysis , Prefrontal Cortex/chemistry , Prefrontal Cortex/metabolism , Rats , Rats, Wistar
6.
J Neuroinflammation ; 10: 147, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24314273

ABSTRACT

IL-1ß-induced anorexia may depend on interactions of the cytokine with neuropeptides and neurotransmitters of the central nervous system control of energy balance and serotonin is likely to be one catabolic mediator targeted by IL-1ß. In the complex interplay involved in feeding modulation, nitric oxide has been ascribed a stimulatory action, which could be of significance in counteracting IL-1ß effects.The present study aims to explore the participation of the nitric oxide and the serotonin systems on the central mechanisms induced by IL-1ß and the relevance of their putative interactions to IL-1ß hypophagia in normal rats.Serotonin levels were determined in microdialysates of the ventromedial hypothalamus after a single intracerebroventricular injection of 10 ng of IL-1ß , with or without the pre-injection of 20 µg of the nitric oxide precursor L-arginine. IL-1ß significantly stimulated hypothalamic serotonin extracellular levels, with a peak variation of 130 ± 37% above baseline. IL- 1ß also reduced the 4-h and the 24-h food intakes (by 23% and 58%, respectively). The IL-1ß-induced serotonergic activation was abolished by the pre-injection of L-arginine while the hypophagic effect was unaffected.The data showed that one central effect of IL-1ß is serotonergic stimulation in the ventromedial hypothalamus, an action inhibited by nitric oxide activity. It is suggested that, although serotonin participates in IL-1ß anorexia, other mechanisms recruited by IL-1ß in normal rats are able to override the absence of the serotonergic hypophagic influence.


Subject(s)
Appetite Regulation/physiology , Arginine/administration & dosage , Hypothalamus/metabolism , Interleukin-1beta/administration & dosage , Serotonin/metabolism , Animals , Anorexia/chemically induced , Anorexia/metabolism , Chromatography, High Pressure Liquid , Eating/physiology , Hypothalamus/drug effects , Injections, Intraventricular , Male , Microdialysis , Nitric Oxide/metabolism , Rats , Rats, Zucker
7.
Cell Mol Neurobiol ; 30(7): 1025-33, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20526668

ABSTRACT

Hypothalamic serotonin inhibits food intake and stimulates energy expenditure. High-fat feeding is obesogenic, but the role of polyunsaturated fats is not well understood. This study examined the influence of different high-PUFA diets on serotonin-induced hypophagia, hypothalamic serotonin turnover, and hypothalamic protein levels of serotonin transporter (ST), and SR-1B and SR-2C receptors. Male Wistar rats received for 9 weeks from weaning a diet high in either soy oil or fish oil or low fat (control diet). Throughout 9 weeks, daily intake of fat diets decreased such that energy intake was similar to that of the control diet. However, the fish group developed heavier retroperitoneal and epididymal fat depots. After 12 h of either 200 or 300 µg intracerebroventricular serotonin, food intake was significantly inhibited in control group (21-25%) and soy group (37-39%) but not in the fish group. Serotonin turnover was significantly lower in the fish group than in both the control group (-13%) and the soy group (-18%). SR-2C levels of fish group were lower than those of control group (50%, P = 0.02) and soy group (37%, P = 0.09). ST levels tended to decrease in the fish group in comparison to the control group (16%, P = 0.339) and the soy group (21%, P = 0.161). Thus, unlike the soy-oil diet, the fish-oil diet decreased hypothalamic serotonin turnover and SR-2C levels and abolished serotonin-induced hypophagia. Fish-diet rats were potentially hypophagic, suggesting that, at least up to this point in its course, the serotonergic impairment was either compensated by other factors or not of a sufficient extent to affect feeding. That fat pad weight increased in the absence of hyperphagia indicates that energy expenditure was affected by the serotonergic hypofunction.


Subject(s)
Dietary Fats, Unsaturated/pharmacology , Eating/drug effects , Fish Oils/pharmacology , Serotonin/metabolism , Adipose Tissue/anatomy & histology , Animals , Diet , Fish Oils/administration & dosage , Humans , Hydroxyindoleacetic Acid/chemistry , Hydroxyindoleacetic Acid/metabolism , Hypothalamus/chemistry , Hypothalamus/metabolism , Infusions, Intraventricular , Male , Organ Size , Random Allocation , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/administration & dosage , Serotonin/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Soybean Oil/administration & dosage , Soybean Oil/pharmacology
8.
Nutr Neurosci ; 12(6): 242-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19925717

ABSTRACT

We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.


Subject(s)
Diet , Eating/physiology , Fasting/physiology , Fish Oils , Hypothalamus/physiology , Neurons/physiology , Soybean Oil , Animals , Body Weight , Energy Intake , Fatty Acids/analysis , Fish Oils/chemistry , Hypothalamus/chemistry , Hypothalamus/cytology , Immunohistochemistry , Male , Neurons/metabolism , Organ Specificity , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation , Rats , Rats, Wistar , Soybean Oil/chemistry
9.
Br J Nutr ; 101(8): 1255-61, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18786279

ABSTRACT

We have previously shown that adult female rats exposed to intra-uterine malnutrition were normophagic, although obese and resistant to insulin-induced hypophagia. The present study aimed at examining aspects of another important catabolic component of energy homeostasis control, the hypothalamic serotonergic function, which inhibits feeding and stimulates energy expenditure. Pregnant dams were fed ad libitum or were restricted to 50 % of ad libitum intake during the first 2 weeks of pregnancy. Control and restricted 4-month-old progeny were studied. The restricted rats had increased body adiposity with normal daily food intake but failed to respond with hypophagia to an intracerebroventricular injection of serotonin (5-hydroxytryptamine; 5-HT). Stimulation, by food ingestion, of extracellular levels of serotonin in medial hypothalamus microdialysates was more pronounced and lasted longer in the restricted than in the control rats. In the restricted group, hypothalamic levels of 5-HT 2C receptor protein tended to be reduced (P = 0.07) while the levels of 5-HT1B receptor and serotonin transporter proteins were significantly elevated (36 and 79 %, respectively). In conclusion, female rats undernourished in utero had normophagic obesity as adults but had an absence of serotonin-induced hypophagia and low hypothalamic levels of the 5-HT 2C receptor. Compensatory adaptations for the functional serotonergic impairment were evidenced, such as an enhanced release of serotonin in response to a meal allied to up-regulated hypothalamic 5-HT1B and transporter expression. Whether these compensations will persist in later life warrants further investigation. Moreover, it cannot be ruled out that the serotonergic component of energy expenditure was already impaired, thus contributing to the observed body-fat phenotype.


Subject(s)
Malnutrition/physiopathology , Obesity/embryology , Prenatal Exposure Delayed Effects , Prenatal Nutritional Physiological Phenomena/physiology , Serotonin/physiology , Animals , Body Weight/physiology , Eating/drug effects , Eating/physiology , Female , Fetal Diseases/physiopathology , Hypothalamus/metabolism , Microdialysis/methods , Obesity/etiology , Obesity/physiopathology , Pregnancy , Rats , Rats, Wistar , Serotonin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL