Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zhongguo Fei Ai Za Zhi ; 25(5): 323-336, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35599008

ABSTRACT

BACKGROUND: The advances in the lung cancer screening methods and therapeutics, together with awareness towards deleterious habits, such as smoking, is increasing the overall survival with better quality of life for the patients. However, lung cancer is still one of the most common and fatal neoplasm with a high incidence and consequently burden to public health worldwide. Thus, based on guidelines and recent phases II and III clinical trials studies, this manuscript summarizes the current treatment sequencing strategies in lung cancer. METHODS: A comprehensive search of related articles was performed focused on phases II and III clinical trials studies. RESULTS: The lung cancer management should take into consideration the tumor characteristics, histology, molecular pathology and be discussed in a multidisciplinary team. Lung cancer treatment options comprises surgery whenever possible, radiotherapy associate with/or chemotherapy and immunotherapy as monotherapy, or combined with chemotherapy and best palliative care. CONCLUSIONS: The screening predictability in more patients, smoking reduction, early diagnosis, better disease understanding and individualized, more effective and tolerable therapeutics are related to an increasing in overall survival and quality of life. In the near future improvement of personalized therapy in precision medicine is expected, enhancing new predictive biomarkers, optimal doses and optimal treatment sequencing as well as anti-cancer vaccines development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Early Detection of Cancer , Humans , Immunotherapy/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Quality of Life
2.
Lasers Surg Med ; 54(6): 883-894, 2022 08.
Article in English | MEDLINE | ID: mdl-35366381

ABSTRACT

INTRODUCTION: Ischemic heart disease is the leading cause of death worldwide, and interventions to reduce myocardial infarction (MI) complications are widely researched. Photobiomodulation therapy (PBMT) has altered multiple biological processes in tissues and organs, including the heart. OBJECTIVES: This study aimed to assess the temporal effects of PBMT on cardiac fibrosis activation after MI in rats. In this proof-of-concept study, we monitored the change in expression patterns over time of genes and microRNAs (miRNAs) involved in the formation of cardiac fibrosis post-MI submitted to PBMT. MATERIALS AND METHODS: Experimental MI was induced, and PBMT was applied shortly after coronary artery ligation (laser light of wavelength 660 nm, 15 mW of power, energy density 22.5 J/cm2 , 60 seconds of application, irradiated area 0.785 cm2 , fluence 1.1 J/cm2 ). Ventricular septal samples were collected at 30 minutes, 3, 6, 24 hours, and 3 days post-MI to determine temporal PBMT's effects on messenger RNA (mRNA) expression associated with cardiac fibrosis activation and miRNAs expression. RESULTS: PBMT, when applied after ischemia, reversed the changes in mRNA expression of myocardial extracellular matrix genes induced by MI. Surprisingly, PBMT modified cardiac miRNAs expression related to fibrosis replacement in the myocardium. Expression correlations between myocardial mRNAs were assessed. The correlation coefficient between miRNAs and target mRNAs was also determined. A positive correlation was detected among miR-21 and transforming growth factor beta-1 mRNA. The miR-29a expression negatively correlated to Col1a1, Col3a1, and MMP-2 mRNA expressions. In addition, we observed that miR-133 and Col1a1 mRNA were negatively correlated. CONCLUSION: The results suggest that PBMT, through the modulation of gene transcription and miRNA expressions, can interfere in cardiac fibrosis activation after MI, mainly reversing the signaling pathway of profibrotic genes.


Subject(s)
Low-Level Light Therapy , MicroRNAs , Myocardial Infarction , Animals , Fibrosis , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/radiotherapy , RNA, Messenger/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...