Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38257749

ABSTRACT

Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.


Subject(s)
Epithelial Cells , Fibroblasts , Humans , Epithelium , Neurons , Cell Line , Cytomegalovirus
2.
J Vis Exp ; (184)2022 06 23.
Article in English | MEDLINE | ID: mdl-35815988

ABSTRACT

Microfluidic systems have greatly improved immunoassay techniques. However, many microfabrication techniques require specialized, expensive, or complicated equipment, making fabrication costly and incompatible with mass production, which is one of the most important preconditions for point-of-care tests (POCT) to be adopted in low-resource settings. This work describes the fabrication process of an acrylic (polymethylmethacrylate, PMMA) device for nanoparticle-conjugated enzymatic immunoassay testing using the computer numerical control (CNC) micromilling technique. The functioning of the microfluidic device is shown by performing an immunoassay to detect a commercial antibody using lysozyme as a model antigen conjugated to 100 nm magnetic nanoparticles. This device integrates a physical staggered restriction of only 5 µm in height, used to capture magnetic microparticles that make up a magnetic trap by placing an external magnet. In this way, the magnetic force on the immunosupport of conjugated nanoparticles is enough to capture them and resist flow drag. This microfluidic device is particularly suitable for low-cost mass production without the loss of precision for immunoassay performance.


Subject(s)
Magnetite Nanoparticles , Microfluidic Analytical Techniques , Computers , Equipment Design , Immunoassay/methods , Lab-On-A-Chip Devices , Microfluidics/methods
3.
Curr Top Med Chem ; 22(2): 109-131, 2022.
Article in English | MEDLINE | ID: mdl-34809549

ABSTRACT

BACKGROUND: Allium sativum L., or garlic, is one of the most studied plants worldwide within the field of traditional medicine. Current interests lie in the potential use of garlic as a preventive measure and adjuvant treatment for viral infections, e.g., SARS-CoV-2. Even though it cannot be presented as a single treatment, its beneficial effects are beyond doubt. The World Health Organization has deemed it an essential part of any balanced diet with immunomodulatory properties. OBJECTIVE: The aim of the study was to review the literature on the effects of garlic compounds and preparations on immunomodulation and viral infection management, with emphasis on SARS-CoV- -2. METHODS: Exhaustive literature search has been carried out on electronic databases. CONCLUSION: Garlic is a fundamental part of a well-balanced diet which helps maintain general good health. The reported information regarding garlic's ability to beneficially modulate inflammation and the immune system is encouraging. Nonetheless, more efforts must be made to understand the actual medicinal properties and mechanisms of action of the compounds found in this plant to inhibit or diminish viral infections, particularly SARS-CoV-2. Based on our findings, we propose a series of innovative strategies to achieve such a challenge in the near future.


Subject(s)
COVID-19 Drug Treatment , Garlic , Metabolic Diseases , Humans , Immunomodulation , Plant Extracts/pharmacology , SARS-CoV-2
4.
PLoS One ; 15(4): e0232408, 2020.
Article in English | MEDLINE | ID: mdl-32353034

ABSTRACT

Mitochondria are quantitatively the most important sources of reactive oxygen species (ROS) which are formed as by-products during cellular respiration. ROS generation occurs when single electrons are transferred to molecular oxygen. This leads to a number of different ROS types, among them superoxide. Although most studies focus on ROS generation in the mitochondrial matrix, the intermembrane space (IMS) is also important in this regard. The main scavengers for the detoxification of superoxide in the IMS are Cu, Zn superoxide dismutase (SOD1) and cytochrome-c. Similar to ROS, certain reactive carbonyl species are known for their high reactivity. The consequences are deleterious modifications to essential components compromising cellular functions and contributing to the etiology of severe pathological conditions like cancer, diabetes and neurodegeneration. In this study, we investigated the susceptibility of SOD1 and cytochrome-c to in vitro glycation by the dicarbonyl methylglyoxal (MGO) and the resulting effects on their structure. We utilized experimental techniques like immunodetection of the MGO-mediated modification 5-hydro-5-methylimidazolone, differential scanning calorimetry, fluorescence emission and circular dichroism measurements. We found that glycation of cytochrome-c leads to monomer aggregation, an altered secondary structure (increase in alpha helical content) and slightly more compact folding. In addition to structural changes, glycated cytochrome-c displays an altered thermal unfolding behavior. Subjecting SOD1 to MGO does not influence its secondary structure. However, similar to cytochrome-c, subunit aggregation is observed under denaturating conditions. Furthermore, the appearance of a second peak in the calorimetry diagram indirectly suggests de-metallation of SOD1 when high MGO levels are used. In conclusion, our data demonstrate that MGO has the potential to alter several structural parameters in important proteins of energy metabolism (cytochrome-c) and antioxidant defense (cytochrome-c, SOD1).


Subject(s)
Cytochromes c/chemistry , Mitochondria/metabolism , Pyruvaldehyde/pharmacology , Superoxide Dismutase-1/chemistry , Animals , Cytochromes c/metabolism , Horses , Mitochondria/drug effects , Protein Folding , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...