ABSTRACT
Herbicides are agrochemicals applied in the control of weeds. With the frequent and repetitive use of these substances, serious problems have been reported. Compounds of natural origin and their derivatives are attractive options to obtain new compounds with herbicidal properties. By aiming to develop compounds with potentiated herbicidal activity, phenoxyacetic acids were synthesized from eugenol and guaiacol. The synthesized compounds were characterized and the herbicidal potential of phenoxyacetic acids and precursors was evaluated through bioassays regarding the germination and initial development of Lactuca sativa and Sorghum bicolor seedlings, with the induction of DNA damage. The induction of changes in the mitotic cycle of meristematic cells of roots of L. sativa was also analyzed. At the concentration of 3 mmol L-1, phenols and their respective phenoxyacetic acids presented phytotoxic and cytotoxic activities in L. sativa and S. bicolor. Eugenol and guaiacol also presented genotoxic action in L. sativa. The toxic effect of eugenoxyacetic acid was more pronounced in L. sativa than in S. bicolor, similar to the commercial 2,4-D herbicide. Molecular properties of the phenols and their derivatives phenoxyacetic acids were compared with the ones obtained for the herbicide 2,4-D, where it was found a correlation between their molecular properties and bioactivity.
Subject(s)
Herbicides , 2,4-Dichlorophenoxyacetic Acid/toxicity , Eugenol/toxicity , Germination , Guaiacol , Herbicides/toxicityABSTRACT
On November 2015, one of Brazil's most important watersheds was impacted by the mine waste from Fundão dam collapse in Mariana. The mine waste traveled over 600â¯km along the Doce River before reaching the sea, causing severe devastation along its way. Here we assessed trace element concentrations and cytogenotoxic effects of the released mine waste. Water samples were collected along the Doce River ten days after the disaster in two impacted sites and one non-impacted site. Sampling points were located hundreds of kilometers downstream of the collapsed dam. Water samples were used for trace element quantification and to run an experiment using Allium cepa to test cytogenotoxicity. We found extremely high concentrations of particulate Fe, Al, and Mn in the impacted sites. We observed cytogenotoxic effects such as alterations in mitotic and phase indexes, and enhanced frequency of chromosomal aberrations. Our results indicate interferences in the cell cycle in impacted sites located hundreds of kilometers downstream of the disaster. The environmental impacts of the dam collapse may not only be far-reaching but also very likely long-lasting, because the mine waste may persist in the Doce River sediment for decades.
Subject(s)
Chromosome Aberrations/drug effects , Disasters , Environmental Exposure/adverse effects , Mining , Mitosis/drug effects , Onions/drug effects , Water Pollutants, Chemical/toxicity , Brazil , Environmental Monitoring , Rivers/chemistry , Structure Collapse , Trace Elements/toxicityABSTRACT
Spent pot liner (SPL) is a solid waste generated during the primary smelting of aluminum, and its toxicity is attributed to the presence of fluoride, cyanide, and aluminum salts, which can be leached into aquatic ecosystems. Since the effects of this waste on aquatic life forms have not yet been investigated, the objective of our study was to evaluate the toxicity of simulated leachates of SPL on zebrafish (Danio rerio). Animals were exposed to 0 (control), 0.32, 0.64, or 0.95 g L-1 of SPL for 24, 72, and 96 h, and genotoxicity was accessed through micronucleus and comet assays. All of the tested treatments induced DNA fragmentation, and the observed frequency of micronuclei and damaged nucleoids generally increased with increasing SPL concentration. The highest frequency of micronuclei (3.3 per 3000 erythrocytes) was detected after 96 h of exposure with 0.95 g L-1 SPL. In the comet assay, nucleoids classified with highest level of damage in relation to the control were observed principally after 24 and 96 h of exposure. The data obtained in this study confirm the genotoxicaction and mutagenic potential of SPL and indicate that open-air deposits of the waste material could represent a health risk to humans and ecosystems alike.
Subject(s)
DNA Damage , Industrial Waste/adverse effects , Micronuclei, Chromosome-Defective/chemically induced , Models, Theoretical , Mutagens/toxicity , Zebrafish/genetics , Aluminum/toxicity , Animals , Comet Assay , Cyanides/toxicity , Fluorides/toxicity , Humans , Micronucleus TestsABSTRACT
Guava (Psidium guajava L.) is a plant often employed in popular medicine. Recently several studies have alerted about the toxicity of substances present in medicinal plants, which can pose risks to the human health. In this sense, the present work aimed to investigate the phytotoxic, cytotoxic and genotoxic action of three guava varieties - Paluma, Pedro Sato and Roxa ("purple") - on the plant test system Lactuca sativa L. Thus, macro- and microscopic evaluations were carried out for five infusion concentrations (2.5, 5.0, 10.0, 20.0 and 40.0 g.L(-1)) prepared from each variety. Distilled water was used as negative control. Chromatographic and spectroscopic analysis by HPLC-PAD indicated that the chemical composition of the infusion of Roxa is different than that of the infusions of the varieties Paluma and Pedro Sato. It was observed that seed germination and root growth in L. sativa exposed to infusions decreased with increasing infusion concentration, regardless of the tested cultivar. For the mitotic index, no statistical differences were observed. On the other hand, a significant increase in the frequency of cell cycle alterations was verified, especially for the highest concentrations tested. The cytogenotoxic effect was significant. Therefore, guava should not be used indiscriminately in popular medicine.
Subject(s)
Germination/drug effects , Lactuca/drug effects , Meristem/drug effects , Plant Extracts/toxicity , Plant Roots/drug effects , Psidium/chemistry , Cell Cycle/drug effects , Chromatography, High Pressure Liquid , Lactuca/growth & development , Mutagenicity Tests/methodsABSTRACT
Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.