Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-469775

ABSTRACT

Atazanavir (ATV) has already been considered as a potential repurposing drug to 2019 coronavirus disease (COVID-19), however, there are controversial reports on its mechanism of action and effectiveness as anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the pre-clinical chain of experiments: enzymatic, molecular docking, cell-based, and in vivo assays, it is demonstrated here that both SARS-CoV-2 B.1 lineage and variant of concern gamma are susceptible to this antiretroviral. Enzymatic assays and molecular docking calculations showed that SARS-CoV-2 main protease (Mpro) was inhibited by ATV, with Morrisons inhibitory constant (Ki) 1.5-fold higher than boceprevir (GC376, a positive control). ATV was a competitive inhibition, increasing the Mpros Michaelis-Menten (Km) more than 6-fold. Cell-based assays indicated that SARS-CoV-2 gamma is more susceptible to ATV than its predecessor strain B.1. Using oral administration of ATV in mice to reach plasmatic exposure similar to humans, transgenic mice expression in human angiotensin converting enzyme 2 (K18-hACE2) were partially protected against lethal challenge with SARS-CoV-2 gamma. Moreover, less cell death and inflammation were observed in the lung from infected and treated mice. Our studies may contribute to a better comprehension of the Mpro/ATV interaction, which could pave the way to the development of specific inhibitors of this viral protease.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-446200

ABSTRACT

Several animal models are being used to explore important features of COVID-19, nevertheless none of them recapitulates all aspects of the disease in humans. The continuous refinement and development of other options of in vivo models are opportune, especially ones that are carried out at BSL-2 (Biosafety Level 2) laboratories. In this study, we investigated the suitability of the intranasal infection with the murine betacoronavirus MHV-3 to recapitulate multiple aspects of the pathogenesis of COVID-19 in C57BL/6J mice. We demonstrate that MHV-3 replicated in lungs 1 day after inoculation and triggered respiratory inflammation and dysfunction. This MHV-model of infection was further applied to highlight the critical role of TNF in cytokine-mediated coronavirus pathogenesis. Blocking TNF signaling by pharmacological and genetic strategies greatly increased the survival time and reduces lung injury of MHV-3-infected mice. In vitro studies showed that TNF blockage decreased SARS-CoV-2 replication in human epithelial lung cells and resulted in the lower release of IL-6 and IL-8 cytokines beyond TNF itself. Taken together, our results demonstrate that this model of MHV infection in mice is a useful BSL-2 screening platform for evaluating pathogenesis for human coronaviruses infections, such as COVID-19.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20182055

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocytes death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with COVID-19. Here, we show that SARS-CoV-2 induces inflammasome activation and cell death by pyroptosis in human monocytes, experimentally infected and in patients under intensive care. Pyroptosis was dependent on caspase-1 engagement, prior to IL-1{beta} production and inflammatory cell death. Monocytes exposed to SARS-CoV-2 downregulate HLA-DR, suggesting a potential limitation to orchestrate the immune response. Our results originally describe the mechanism by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb in patients with severe 2019 coronavirus disease (COVID-19), and emphasize the need for identifying anti-inflammatory and antiviral strategies to prevent SARS-CoV-2-induced pyroptosis.

SELECTION OF CITATIONS
SEARCH DETAIL