Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 21(3): 275-283, 2022 03.
Article in English | MEDLINE | ID: mdl-35115722

ABSTRACT

Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.


Subject(s)
DNA , Polymers , Polymers/chemistry
2.
Angew Chem Int Ed Engl ; 57(47): 15430-15434, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30204292

ABSTRACT

Herein, we describe the development of a photoredox-catalyzed decarboxylative radical addition-polar cyclization cascade approach to functionalized cyclopropanes. Reductive termination of radical-polar crossover reactions between aliphatic carboxylic acids and electron-deficient alkenes yielded carbanion intermediates that were intercepted in intramolecular alkylations with alkyl chlorides appended to the alkene substrate. The mild conditions, which make use of a readily available organic photocatalyst and visible light, were demonstrated to be amenable to a broad range of structurally complex carboxylic acids and a wide variety of chloroalkyl alkenes, demonstrating exquisite functional group tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...