Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Appl Radiat Isot ; 208: 111288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518502

ABSTRACT

We present an investigation of the interpad region (IP) in the Ultra-Fast Silicon Detector (UFSD) Type 10, utilizing a femtosecond laser and the transient current technique (TCT). We elucidate the isolation structure and measure the IP distance between pads, comparing it to the nominal value provided by the vendor. A comparison of sensors with identical layouts but different nominal IP distances (49 µm vs. 61 µm) and different processing parameters revealed their significant different charge collection properties in the IP.

2.
Sensors (Basel) ; 23(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571529

ABSTRACT

We present an in-depth investigation of the interpad (IP) gap region in the ultra-fast silicon detector (UFSD) Type 10, utilizing a femtosecond laser beam and the transient current technique (TCT) as probing instruments. The sensor, fabricated in the trench-isolated TI-LGAD RD50 production batch at the FBK Foundry, enables a direct comparison between TI-LGAD and standard UFSD structures. This research aims to elucidate the isolation structure in the IP region and measure the IP distance between pads, comparing it to the nominal value provided by the vendor. Our findings reveal an unexpectedly strong signal induced near p-stops. This effect is amplified with increasing laser power, suggesting significant avalanche multiplication, and is also observed at moderate laser intensity and high HV bias. This investigation contributes valuable insights into the IP region's isolation structure and electric field effects on charge collection, providing critical data for the development of advanced sensor technology for the Compact Muon Selenoid (CMS) experiment and other high-precision applications.

3.
Front Mol Biosci ; 10: 1079029, 2023.
Article in English | MEDLINE | ID: mdl-37388247

ABSTRACT

This paper describes performance enhancement developments to a closed-loop pump-driven wire-guided flow jet (WGJ) for ultrafast X-ray spectroscopy of liquid samples. Achievements include dramatically improved sample surface quality and reduced equipment footprint from 7 × 20 cm2 to 6 × 6 cm2, cost, and manufacturing time. Qualitative and quantitative measurements show that micro-scale wire surface modification yields significant improvements to the topography of the sample liquid surface. By manipulating their wettability, it is possible to better control the liquid sheet thickness and to obtain a smooth liquid sample surface, as demonstrated in this work.

4.
J Colloid Interface Sci ; 634: 757-768, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36565618

ABSTRACT

Time-resolved structural investigations of crystallization of water in lipid/protein/salt mesophases at cryogenic temperatures are significant for comprehension of ice nanocrystal nucleation kinetics in lipid membranous systems and can lead to a better understanding of how to experimentally retard the ice formation that obstructs the protein crystal structure determination. Here, we present a time-resolved synchrotron microfocus X-ray diffraction (TR-XRD) study based on ∼40,000 frames that revealed the dynamics of water-to-ice crystallization in a lipid/protein/salt mesophase subjected to cryostream cooling at 100 K. The monoolein/hemoglobin/salt/water system was chosen as a model composition related to protein-loaded lipid cubic phases (LCP) broadly used for the crystallization of proteins. Under confinement in the nanoscale geometry, metastable short-living cubic ice (Ic) rapidly crystallized well before the formation of hexagonal ice (Ih). The detected early nanocrystalline states of water-to-ice transformation in multicomponent systems are relevant to a broad spectrum of technologies and understanding of natural phenomena, including crystallization, physics of water nanoconfinement, and rational design of anti-freezing and cryopreservation systems.


Subject(s)
Ice , Water , Crystallization , Phase Transition , Water/chemistry , Cold Temperature
6.
J Synchrotron Radiat ; 28(Pt 6): 1778-1785, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738931

ABSTRACT

ELI Beamlines is a rapidly progressing pillar of the pan-European Extreme Light Infrastructure (ELI) project focusing on the development and deployment of science driven by high-power lasers for user operations. This work reports the results of a commissioning run of a water-jet plasma X-ray source driven by the L1 Allegra laser, outlining the current capabilities and future potential of the system. The L1 Allegra is one of the lasers developed in-house at ELI Beamlines, designed to be able to reach a pulse energy of 100 mJ at a 1 kHz repetition rate with excellent beam properties. The water-jet plasma X-ray source driven by this laser opens opportunities for new pump-probe experiments with sub-picosecond temporal resolution and inherent synchronization between pump and probe pulses.

7.
Rev Sci Instrum ; 92(3): 033104, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820054

ABSTRACT

We present a setup for time-resolved spectroscopic ellipsometry in a pump-probe scheme using femtosecond laser pulses. As a probe, the system deploys supercontinuum white light pulses that are delayed with respect to single-wavelength pump pulses. A polarizer-sample-compensator-analyzer configuration allows ellipsometric measurements by scanning the compensator azimuthal angle. The transient ellipsometric parameters are obtained from a series of reflectance-difference spectra that are measured for various pump-probe delays and polarization (compensator) settings. The setup is capable of performing time-resolved spectroscopic ellipsometry from the near-infrared through the visible to the near-ultraviolet spectral range at 1.3 eV-3.6 eV. The temporal resolution is on the order of 100 fs within a delay range of more than 5 ns. We analyze and discuss critical aspects such as fluctuations of the probe pulses and imperfections of the polarization optics and present strategies deployed for circumventing related issues.

8.
J Appl Crystallogr ; 53(Pt 6): 1416-1424, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33304220

ABSTRACT

Electron crystallography of sub-micrometre-sized 3D protein crystals has emerged recently as a valuable field of structural biology. In meso crystallization methods, utilizing lipidic mesophases, particularly lipidic cubic phases (LCPs), can produce high-quality 3D crystals of membrane proteins (MPs). A major step towards realizing 3D electron crystallography of MP crystals, grown in meso, is to demonstrate electron diffraction from such crystals. The first task is to remove the viscous and sticky lipidic matrix that surrounds the crystals without damaging the crystals. Additionally, the crystals have to be thin enough to let electrons traverse them without significant multiple scattering. In the present work, the concept that focused ion beam milling at cryogenic temperatures (cryo-FIB milling) can be used to remove excess host lipidic mesophase matrix is experimentally verified, and then the crystals are thinned to a thickness suitable for electron diffraction. In this study, bacteriorhodopsin (BR) crystals grown in a lipidic cubic mesophase of monoolein were used as a model system. LCP from a part of a hexagon-shaped plate-like BR crystal (∼10 µm in thickness and ∼70 µm in the longest dimension), which was flash-frozen in liquid nitro-gen, was milled away with a gallium FIB under cryogenic conditions, and a part of the crystal itself was thinned into a ∼210 nm-thick lamella with the ion beam. The frozen sample was then transferred into an electron cryo-microscope, and a nanovolume of ∼1400 × 1400 × 210 nm of the BR lamella was exposed to 200 kV electrons at a fluence of ∼0.06 e Å-2. The resulting electron diffraction peaks were detected beyond 2.7 Šresolution (with an average peak height to background ratio of >2) by a CMOS-based Ceta 16M camera. The results demonstrate that cryo-FIB milling produces high-quality lamellae from crystals grown in lipidic mesophases and pave the way for 3D electron crystallography on crystals grown or embedded in highly viscous media.

9.
IUCrJ ; 7(Pt 6): 1102-1113, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33209321

ABSTRACT

An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.

10.
J Synchrotron Radiat ; 27(Pt 6): 1730-1733, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147201

ABSTRACT

A new modification of a table-top laser-driven water-jet plasma X-ray source has been successfully implemented and commissioned at the Extreme Light Infrastructure (ELI) Beamlines user facility. In order to preserve the broadband nature of the source for spectroscopic experiments, a polycapillary lens was initially chosen as the focusing element. Generally, polycapillary X-ray optics have a narrow photon acceptance angle and small field of view, making alignment complicated and time-consuming. This contribution demonstrates a straightforward, reliable and reproducible procedure for aligning polycapillary focusing optics with broadband X-rays. The method involves a pre-alignment step where two X-ray slits are mounted orthogonally on opposite sides of a 3D-printed cylindrical polycapillary holder. This helps to precisely determine the optical axis of the X-ray beam. Subsequent mounting of the polycapillary in the pre-aligned holder with the slits removed allowed for immediate transmission of the X-ray photons through the optics and has provided a good starting point for fine alignment.

11.
J Phys Condens Matter ; 32(40): 405403, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32628643

ABSTRACT

We report results from visible and UV Raman spectroscopy studies of the phonon spectra of a polycrystalline sample of the prototypical perovskite type oxide BaZrO3 and a 500 nm thick film of its Y-doped, proton conducting, counterpart BaZr0.8Y0.2O2.9. Analysis of the Raman spectra measured using different excitation energies (between 3.44 eV and 5.17 eV) reveals the activation of strong resonance Raman effects involving all lattice vibrational modes. Specifically, two characteristic energies were identified for BaZrO3, one around 5 eV and one at higher energy, respectively, and one for BaZr0.8Y0.2O2.9, above 5 eV. Apart from the large difference in spectral intensity between the non-resonant and resonant conditions, the spectra are overall similar to each other, suggesting that the vibrational spectra of the perovskites are stable when investigated using an UV laser as excitation source. These results encourage further use of UV Raman spectroscopy as a novel approach for the study of lattice vibrational dynamics and local structure in proton conducting perovskites, and open up for, e.g., time-resolved experiments on thin films targeted at understanding the role of lattice vibrations in proton transport in these kinds of materials.

12.
Opt Express ; 28(14): 20686-20703, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680123

ABSTRACT

The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode. We discuss requirements for the THz field strength in order to achieve reliable results and compare our numerical study with the analysis of experimental data that were obtained at the FEL in Hamburg - FLASH.

13.
Phys Chem Chem Phys ; 22(12): 6538-6552, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-31994556

ABSTRACT

Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states. In this work, we have studied isolated FMN in an aqueous solution in order to elucidate the intrinsic electronic and vibrational changes of the chromophore upon excitation. The ultrafast transitions of excited FMN were monitored through the joint use of femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy encompassing a time window between 0 ps and 6 ns with 50 fs time resolution. Global analysis of the obtained transient visible absorption and transient Raman spectra in combination with extensive quantum chemistry calculations identified unambiguously the singlet and triplet FMN populations and addressed solvent dynamics effects. The good agreement between the experimental and theoretical spectra facilitated the assignment of electronic transitions and vibrations. Our results represent the first steps towards more complex experiments aimed at tracking structural changes of FMN embedded in light-inducible proteins upon photoexcitation.


Subject(s)
Flavin Mononucleotide/chemistry , Photochemical Processes , Spectrum Analysis, Raman , Computer Simulation , Flavin Mononucleotide/metabolism
14.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561479

ABSTRACT

Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.


Subject(s)
Electrons , Macromolecular Substances/chemistry , Models, Molecular , Nanoparticles/chemistry , X-Rays , Crystallography, X-Ray , Molecular Structure
15.
Sci Rep ; 9(1): 8851, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221980

ABSTRACT

Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip. The density of the focusing carrier gas is high at this point. We show here how this gas interacts with a near infrared laser pulse (800 nm wavelength, 120 fs pulse duration) at intensities approaching 1016 Wcm-2. We observe acceleration of gas ions to kinetic energies of 100s eV and study their energies as a function of the carrier gas density. Our results indicate that field ionisation by the intense near-infrared laser pulse opens up a plasma channel behind the laser pulse. The observations can be understood in terms of a Coulomb explosion of the created underdense plasma channel. The results can be used to estimate gas background in experiments with the injector and they open up opportunities for a new class of studies on electron and ion dynamics in nanoparticles surrounded by a low-density gas.

16.
Sci Adv ; 5(5): eaav8801, 2019 05.
Article in English | MEDLINE | ID: mdl-31058226

ABSTRACT

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.

18.
IUCrJ ; 5(Pt 6): 673-680, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30443352

ABSTRACT

Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.

19.
Nat Commun ; 9(1): 4025, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279492

ABSTRACT

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

20.
IUCrJ ; 5(Pt 5): 531-541, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30224956

ABSTRACT

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.

SELECTION OF CITATIONS
SEARCH DETAIL
...