Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539877

ABSTRACT

In recent years, research on the discovery of natural compounds with potent antioxidant properties has resulted in growing interest in these compounds due to their potential therapeutic applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds, prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2 pathway by argan oil components leads to the increased expression of downstream target proteins like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase 1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2 signaling pathway by these components highlights the potential of argan oil in protecting cells from oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway, updating our knowledge on their mechanisms of action and associated health benefits.

2.
Molecules ; 28(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570894

ABSTRACT

Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.


Subject(s)
Antioxidants , Iron , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Olive Oil/pharmacology , Reactive Oxygen Species/metabolism , Iron/pharmacology , Hydrogen Peroxide/pharmacology , Plant Oils/pharmacology , Plant Oils/chemistry , Oxidative Stress , Lipid Peroxidation , Glutathione/metabolism , Phenols/pharmacology , Superoxide Dismutase/metabolism
3.
Front Mol Neurosci ; 16: 1170313, 2023.
Article in English | MEDLINE | ID: mdl-37138705

ABSTRACT

Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal ß-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.

4.
Antioxidants (Basel) ; 12(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36671029

ABSTRACT

Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1ß and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.

5.
Front Mol Neurosci ; 16: 1299314, 2023.
Article in English | MEDLINE | ID: mdl-38164407

ABSTRACT

Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal ß-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal ß-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.

6.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233157

ABSTRACT

Exposure to endotoxins (lipopolysaccharides, LPS) may lead to a potent inflammatory cytokine response and a severe impairment of metabolism, causing tissue injury. The protective effect provided by cactus seed oil (CSO), from Opuntia ficus-indica, was evaluated against LPS-induced inflammation, dysregulation of peroxisomal antioxidant, and ß-oxidation activities in the brain and the liver. In both tissues, a short-term LPS exposure increased the proinflammatory interleukine-1ß (Il-1ß), inducible Nitroxide synthase (iNos), and Interleukine-6 (Il-6). In the brain, CSO action reduced only LPS-induced iNos expression, while in the liver, CSO attenuated mainly the hepatic Il-1ß and Il-6. Regarding the peroxisomal antioxidative functions, CSO treatment (as Olive oil (OO) or Colza oil (CO) treatment) induced the hepatic peroxisomal Cat gene. Paradoxically, we showed that CSO, as well as OO or CO, treatment can timely induce catalase activity or prevent its induction by LPS, respectively, in both brain and liver tissues. On the other hand, CSO (as CO) pretreatment prevented the LPS-associated Acox1 gene and activity decreases in the liver. Collectively, CSO showed efficient neuroprotective and hepato-protective effects against LPS, by maintaining the brain peroxisomal antioxidant enzyme activities of catalase and glutathione peroxidase, and by restoring hepatic peroxisomal antioxidant and ß-oxidative capacities.


Subject(s)
Opuntia , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Brain/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Liver/metabolism , Mice , Olive Oil/pharmacology , Opuntia/metabolism
7.
FEBS J ; 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35880408

ABSTRACT

Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.

8.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35455460

ABSTRACT

During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and ß-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and ß-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.

9.
Steroids ; 183: 109032, 2022 07.
Article in English | MEDLINE | ID: mdl-35381271

ABSTRACT

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Subject(s)
Silybum marianum , alpha-Tocopherol , Animals , Antioxidants/pharmacology , Flavonoids , Humans , Hydroxycholesterols , Mice , Silybum marianum/metabolism , Myoblasts/metabolism , Plant Oils , RNA, Messenger , Reactive Oxygen Species/metabolism , alpha-Tocopherol/pharmacology
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445672

ABSTRACT

In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid ß-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal ß-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid ß-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid ß-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.


Subject(s)
Fatty Acids/metabolism , PPAR alpha/metabolism , Peroxisomes/metabolism , Acyl-CoA Oxidase/metabolism , Animals , Humans , Liver/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , PPAR alpha/physiology , Peroxisome Proliferators , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Retinoic Acid/metabolism , Response Elements/genetics , Retinoid X Receptors/metabolism , Transcriptional Activation/genetics
11.
J Food Biochem ; 45(4): e13691, 2021 04.
Article in English | MEDLINE | ID: mdl-33694172

ABSTRACT

Investigation of dietary biologically active phytochemicals is of interest due to the availability, low cost, and low rate of side effects of these substances. The main objective of this work was to investigate the influence of the essential oil (EO) extracted from the aerial parts of Artemisia dracunculus on the antioxidant capacity of cells as this plant is one of the most available and widely used as spice and in folk medicine. For this, BV-2 microglial wild type (WT) and acyl-CoA oxidase type 1 (ACOX1) deficient cells (Acox1-/- ) were used. Acox1-/- cells were applied as the model of cellular oxidative damage. The main component of EO of A. dracunculus was estragole, which was reaching 84.9% in plants cultivated at high altitude Armenian landscape. IC50 value of EO in 1,1-diphenyl-2-picrylhydrazyl assay was 94.2 µg/ml. Sub-cytotoxic concentration in the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test for both BV-2 WT and Acox1-/- cell lines was 5.10-1  µg/ml. Seventy-two-hours treatment with EO leads to the increased viability (up to 12% in WT and up to 14% -in BV-2 Acox1-/- cells). The 48-hr treatment increased the ACOX1 activity up to 70% in WT cells. Catalase and superoxide dismutase activities of both cell lines increased following the 24-48-hr treatment. These results indicate that A. dracunculus EO can be considered as a potential protective agent useful in preventive medicine.


Subject(s)
Artemisia , Oils, Volatile , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Phytochemicals/pharmacology
12.
Liver Transpl ; 27(7): 997-1006, 2021 07.
Article in English | MEDLINE | ID: mdl-33306256

ABSTRACT

Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.


Subject(s)
Liver Transplantation , Adenosine Diphosphate , Animals , Autophagy , Liver , Liver Transplantation/adverse effects , Perfusion , Rats
13.
Adv Exp Med Biol ; 1299: 91-104, 2020.
Article in English | MEDLINE | ID: mdl-33417210

ABSTRACT

Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Peroxisomes/metabolism , Peroxisomes/pathology , Humans , Oxidative Stress
14.
Int J Mol Sci ; 20(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398943

ABSTRACT

The immune response is essential to protect organisms from infection and an altered self. An organism's overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.


Subject(s)
Disease Susceptibility , Immunity , Inflammation/etiology , Inflammation/metabolism , Peroxisomes/metabolism , Aging/genetics , Aging/immunology , Aging/metabolism , Animals , Biomarkers , Energy Metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Immunomodulation , Phagocytosis/genetics , Phagocytosis/immunology , Signal Transduction
15.
Curr Pharm Des ; 25(16): 1847-1860, 2019.
Article in English | MEDLINE | ID: mdl-31267861

ABSTRACT

The World Health Organization (WHO) report from 2014 documented that non-communicable socalled civilization diseases such as cardiovascular disease, chronic respiratory diseases, cancer or type 2 diabetes are responsible for over 50% of all premature deaths in the world. Research carried out over the past 20 years has provided data suggesting that diet is an essential factor influencing the risk of development of these diseases. The increasing knowledge on chemopreventive properties of certain food ingredients, in particular, those of plant origin, opened the discussion on the possibility to use edible plants or their active components in the prevention of these chronic diseases. Health-promoting properties of plant foods are associated with the presence of secondary metabolites that can affect many biological mechanisms of critical importance to the proper functioning of the human organism. Particularly, there have been numerous investigations indicating strong physiological effects of bioactive plant phenols belonging to the flavonoid family. These observations initiated mass production of dietary supplements containing flavonoids commercialized under the name antioxidants, even if their chemical properties did not justify such a term. However, epidemiological studies revealed that isolated bioactive phytochemicals are not as effective as fruits and vegetables containing these substances whereas they are of interest of the functional food industry. In this paper, the critical assessment of reasons for this turn of events has been attempted and the concept of food synergy has been suggested as a future strategy of dietary chemoprevention.


Subject(s)
Diet , Dietary Supplements , Noncommunicable Diseases/prevention & control , Phytochemicals/pharmacology , Antioxidants , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Fruit , Humans , Neoplasms , Respiratory Tract Diseases , Vegetables
16.
Free Radic Res ; 53(sup1): 1101-1112, 2019.
Article in English | MEDLINE | ID: mdl-31039629

ABSTRACT

Mediterranean diet (MD) is the most relevant nutritional aspect of the multisecular Mediterranean civilisation which includes wine as an element of health and wellbeing when consumed with moderation. Mediterranean meals provide food micronutrients which include polyphenols, especially resveratrol from grape and red wine. MD, also called Cretan diet, has been proven to prevent diseases including cardiovascular pathologies, cancer, and to prevent aging. Interestingly, the grape and more precisely in grape skin contains the highest concentration of RSV. In consequence, red wine is the most concentrated food source of RSV found in the human diet. This review topic deals to how efficient is RSV towards alterations during the aging process; obtained from recent data of clinical trials, preclinical studies, and cell culture approach; especially RSV protecting effect on brain aging of elderly; its role on the microglial cells playing a central role in the neuro-inflammation; and in its anti-inflammatory effects on ocular diseases.


Subject(s)
Antioxidants/pharmacology , Diet, Mediterranean , Healthy Aging/drug effects , Neoplasms/drug therapy , Resveratrol/pharmacology , Animals , Antioxidants/administration & dosage , Antioxidants/metabolism , Cardiovascular Diseases/drug therapy , Humans , Resveratrol/administration & dosage , Resveratrol/metabolism
17.
Free Radic Res ; 53(sup1): 1163-1170, 2019.
Article in English | MEDLINE | ID: mdl-30668224

ABSTRACT

A healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial "nutrition and ageing" has different aspects and poses considerable challenges, providing a fertile ground for research and networks. The NutRedOx network will focus on the impact of redox-active compounds in food on healthy ageing, chemoprevention, and redox control in the context of major age-related diseases. The main aim of the NutRedOx network is to gather experts from Europe, and neighbouring countries, and from different disciplines that are involved in the study of biological redox active food components and are relevant to the ageing organism, its health, function, and vulnerability to disease. Together, these experts will form a major and sustainable EU-wide cluster in form of the NutRedOx Centre of Excellence able to address the topic from different perspectives, with the long-term aim to provide a scientific basis for improved nutritional and lifestyle habits, to train the next generation of multidisciplinary researchers in this field, to raise awareness of such habits among the wider population, and also to engage with industry to develop age-adequate foods and medicines.


Subject(s)
Community Networks , Healthy Aging , Nutritional Status , Disease , Europe , Humans , Oxidation-Reduction
18.
Bioorg Chem ; 80: 43-56, 2018 10.
Article in English | MEDLINE | ID: mdl-29864687

ABSTRACT

Here a new series of twenty-one organoselenides, of potential protective activity, were synthesized and tested for their intrinsic cytotoxicity, anti-apoptotic and antioxidant capacities in oligodendrocytes. Most of the organoselenides were able to decrease the ROS levels, revealing antioxidant properties. Compounds 5b and 7b showed a high glutathione peroxidase (GPx)-like activities, which were 1.5 folds more active than ebselen. Remarkably, compound 5a diminished the formation of the oligodendrocytes SubG1 peak in a concentration-dependent manner, indicating its anti-apoptotic properties. Furthermore, based on the SwissADME web interface, we performed an in-silico structure-activity relationship to explore the drug-likeness of these organoselenides, predicting the pharmacokinetic parameters for compounds of interest that could cross the blood-brain barrier. Collectively, we present new organoselenide compounds with cytoprotective and antioxidant properties that can be considered as promising drug candidates for myelin diseases.


Subject(s)
Antioxidants/chemistry , Organoselenium Compounds/chemistry , Protective Agents/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Drug Design , G1 Phase Cell Cycle Checkpoints/drug effects , Mice , Molecular Conformation , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Organoselenium Compounds/pharmacology , Protective Agents/chemical synthesis , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
19.
Oxid Med Cell Longev ; 2018: 6986984, 2018.
Article in English | MEDLINE | ID: mdl-29765501

ABSTRACT

To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.


Subject(s)
Aging/drug effects , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides/adverse effects , Oxidoreductases/therapeutic use , Plant Oils/therapeutic use , Acyl-CoA Oxidase , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Humans , Oxidoreductases/pharmacology , Plant Oils/pharmacology
20.
Int J Mol Sci ; 18(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048364

ABSTRACT

Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS). Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO) or olive oil (OO) for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH) and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx). Hematoxylin-eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT) and aspartate transaminase (AST)). Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4) and Interleukin-10 (IL-10). OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs) signaling and, under LPS, an anti-inflammatory IL-10/Liver X Receptor (IL-10/LXR) route, obviously indicated the high potency and plasticity of the anti-inflammatory properties of argan oil.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Liver Diseases/drug therapy , Liver/drug effects , Olive Oil/pharmacology , Oxidative Stress , Plant Oils/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Dietary Supplements , Lipopolysaccharides/toxicity , Liver/metabolism , Liver Diseases/etiology , Liver Diseases/prevention & control , Mice , Olive Oil/administration & dosage , Olive Oil/therapeutic use , Plant Oils/administration & dosage , Plant Oils/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...