Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Article in English | MEDLINE | ID: mdl-38621623

ABSTRACT

OBJECTIVES: We evaluated the ability of FluoroType MTBDR version 2 (FTv2; Hain Lifescience), a second-step real-time PCR assay, to simultaneously detect Mycobacterium tuberculosis complex (MTBC) DNA and mutations conferring resistance to rifampicin (RIF) and isoniazid (INH), in pulmonary and extrapulmonary samples from patients and compared them with corresponding cultures. METHODS: FTv2 MTBC was evaluated on 1815 and 432 samples from Denmark (DK) and Germany (DE), respectively. RIF and INH resistance mutations were assessed in the German samples and 110 samples from Sierra Leone and subsequently compared to phenotypic antimicrobial susceptibility testing and a composite reference DNA (CRD) based on the GenoType MTBDR line-probe assay and Sanger sequencing or whole-genome sequencing. RESULTS: Of the 584 (557 smear-negative) Danish and 277 (85 smear-negative) German sputum samples, 42 (16) and 246 (54) were culture positive, and 44 (18) and 222 (35) were FTv2 positive, providing an FTv2 sensitivity and specificity of 0.86 (0.63) and 0.98 (DK), 0.90 (0.65) and 1.00 (DE), respectively. The count, sensitivities, and specificities for all pulmonary samples were 1434, 0.79, and 0.99 (DK) and 347, 0.86, and 1.00 (DE), respectively; for extrapulmonary samples, 381, 0.33, 0.99 (DK) and 83, 0.50, and 1.00 (DE). The valid count, sensitivity, and specificity compared with CRD for detecting resistance mutations were RIF 355, 0.99, 0.96, and INH 340, 1.00, and 0.98, respectively. DISCUSSION: FTv2 reliably detects MTBC DNA in pulmonary and extrapulmonary samples and detects resistance mutations for INH and RIF resistance in inhA promoter, katG, and rpoB genes.

2.
ERJ Open Res ; 10(2)2024 Mar.
Article in English | MEDLINE | ID: mdl-38500796

ABSTRACT

Introduction: Mycobacterium simiae is a slow-growing non-tuberculous mycobacterium that can cause non-tuberculous mycobacterium (NTM) pulmonary disease and extrapulmonary infections. Until now, detailed genomic and clinical characteristics, as well as possible transmission routes of this rare pathogen remain largely unknown. Methods: We conducted whole genome sequencing of available M. simiae isolates collected at a tertiary care centre in Central Germany from 2006 to 2020 and set them into context with publicly available M. simiae complex sequences through phylogenetic analysis. Resistance, virulence and stress genes, as well as known Mycobacteriaceae plasmid sequences were detected in whole genome raw reads. Clinical data and course were retrieved and correlated with genomic data. Results: We included 33 M. simiae sensu stricto isolates from seven patients. M. simiae showed low clinical relevance with only two patients fulfilling American Thoracic Society (ATS) criteria in our cohort and three receiving NTM-effective therapy. The bacterial populations were highly stable over time periods of up to 14 years, and no instances of mixed or re-infections with other strains of M. simiae were observed. Clustering with <12 single nucleotide polymorphisms distance was evident among isolates from different patients; however, proof for human-to-human transmission could not be established from epidemiological data. Conclusion: Overall, the available sequence data for M. simiae complex was significantly extended and new insights into its pathogenomic traits were obtained. We demonstrate high longitudinal genomic stability within single patients. Although we cannot exclude human-to-human transmission, we consider it unlikely in the light of available epidemiological data.

3.
Microbiol Spectr ; 12(3): e0240523, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38289066

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) management has become a serious global health challenge. Understanding its epidemic determinants on the regional level is crucial for developing effective control measures. We used whole genome sequencing data of 238 of Mycobacterium tuberculosis complex (MTBC) strains to determine drug resistance profiles, phylogeny, and transmission dynamics of MDR/rifampicin-resistant (RR) MTBC strains from Sierra Leone. Forty-two strains were classified as RR, 196 as MDR, 5 were resistant to bedaquiline (BDQ) and clofazimine (CFZ), but none was found to be resistant to fluoroquinolones. Sixty-one (26%) strains were resistant to all first-line drugs, three of which had additional resistance to BDQ/CFZ. The strains were classified into six major MTBC lineages (L), with strains of L4 being the most prevalent, 62% (n = 147), followed by L6 (Mycobacterium africanum) strains, (21%, n = 50). The overall clustering rate (using ≤d12 single-nucleotide polymorphism threshold) was 44%, stratified into 31 clusters ranging from 2 to 16 strains. The largest cluster (n = 16) was formed by sublineage 2.2.1 Beijing Ancestral 3 strains, which developed MDR several times. Meanwhile, 10 of the L6 strains had a primary MDR transmission. We observed a high diversity of drug resistance mutations, including borderline resistance mutations to isoniazid and rifampicin, and mutations were not detected by commercial assays. In conclusion, one in five strains investigated was resistant to all first-line drugs, three of which had evidence of BDQ/CFZ resistance. Implementation of interventions such as rapid diagnostics that prevent further resistance development and stop MDR-TB transmission chains in the country is urgently needed. IMPORTANCE: A substantial proportion of MDR-TB strains in Sierra Leone were resistant against all first line drugs; however this makes the all-oral-six-month BPaLM regimen or other 6-9 months all oral regimens still viable, mainly because there was no FQ resistance.Resistance to BDQ was detected, as well as RR, due to mutations outside of the hotspot region. While the prevalence of those resistances was low, it is still cause for concern and needs to be closely monitored.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Rifampin/pharmacology , Sierra Leone/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
4.
Pharmaceutics ; 15(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004523

ABSTRACT

The treatment of drug-resistant Mycobacterium tuberculosis relies on complex antibiotic therapy. Inadequate antibiotic exposure can lead to treatment failure, acquired drug resistance, and an increased risk of adverse events. Therapeutic drug monitoring (TDM) can be used to optimize the antibiotic exposure. Therefore, we aimed to develop a single-run multiplex assay using high-performance liquid chromatography-mass spectrometry (HPLC-MS) for TDM of patients with multidrug-resistant, pre-extensively drug-resistant and extensively drug-resistant tuberculosis. A target profile for sufficient performance, based on the intended clinical application, was established and the assay was developed accordingly. Antibiotics were analyzed on a zwitterionic hydrophilic interaction liquid chromatography column and a triple quadrupole mass spectrometer using stable isotope-labeled internal standards. The assay was sufficiently sensitive to monitor drug concentrations over five half-lives for rifampicin, rifabutin, levofloxacin, moxifloxacin, bedaquiline, linezolid, clofazimine, terizidone/cycloserine, ethambutol, delamanid, pyrazinamide, meropenem, prothionamide, and para-amino salicylic acid (PAS). Accuracy and precision were sufficient to support clinical decision making (≤±15% in clinical samples and ±20-25% in spiked samples, with 80% of future measured concentrations predicted to fall within ±40% of nominal concentrations). The method was applied in the TDM of two patients with complex drug-resistant tuberculosis. All relevant antibiotics from their regimens could be quantified and high-dose therapy was initiated, followed by microbiological conversion. In conclusion, we developed a multiplex assay that enables TDM of the relevant first- and second-line anti-tuberculosis medicines in a single run and was able to show its applicability in TDM of two drug-resistant tuberculosis patients.

5.
Clin Microbiol Infect ; 29(6): 758-764, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36813087

ABSTRACT

OBJECTIVE: For non-tuberculous mycobacteria (NTM), minimum inhibitory concentration (MIC) distributions of wild-type isolates have not been systematically evaluated despite their importance for establishing antimicrobial susceptibility testing (AST) breakpoints. METHODS: We gathered MIC distributions for drugs used against the Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) obtained by commercial broth microdilution (SLOMYCOI and RAPMYCOI) from 12 laboratories. Epidemiological cut-off values (ECOFFs) and tentative ECOFFs (TECOFFs) were determined by EUCAST methodology including quality control (QC) strains. RESULTS: The clarithromycin ECOFF was 16 mg/L for M. avium (n = 1271) whereas TECOFFs were 8 mg/L for M. intracellulare (n = 415) and 1 mg/L for MAB (n = 1014) confirmed by analysing MAB subspecies without inducible macrolide resistance (n = 235). For amikacin, the ECOFFs were 64 mg/L for MAC and MAB. For moxifloxacin, the WT spanned >8 mg/L for both MAC and MAB. For linezolid, the ECOFF and TECOFF were 64 mg/L for M. avium and M. intracellulare, respectively. Current CLSI breakpoints for amikacin (16 mg/L), moxifloxacin (1 mg/L) and linezolid (8 mg/L) divided the corresponding WT distributions. For QC M. avium and M. peregrinum, ≥95% of MIC values were well within recommended QC ranges. CONCLUSION: As a first step towards clinical breakpoints for NTM, (T)ECOFFs were defined for several antimicrobials against MAC and MAB. Broad wild-type MIC distributions indicate a need for further method refinement which is now under development within the EUCAST subcommittee for anti-mycobacterial drug susceptibility testing. In addition, we showed that several CLSI NTM breakpoints are not consistent in relation to the (T)ECOFFs.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium avium-intracellulare Infection , Mycobacterium tuberculosis , Humans , Mycobacterium avium Complex , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Nontuberculous Mycobacteria , Amikacin/pharmacology , Moxifloxacin/pharmacology , Linezolid/pharmacology , Mycobacterium avium-intracellulare Infection/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Macrolides/pharmacology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium avium
7.
Clin Microbiol Infect ; 29(6): 751-757, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36842637

ABSTRACT

OBJECTIVES: To describe long-term treatment outcomes in patients with multi-drug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) and validate established outcome definitions for MDR/RR-TB treatment. METHODS: Among patients with MDR/RR-TB admitted to a German MDR/RR-TB referral centre from 1 September 2002 to 29 February 2020, we compared long-term treatment outcomes derived from individual patient follow-up with treatment outcomes defined by WHO-2013, WHO-2021 and the Tuberculosis Network European Trials Group-2016. RESULTS: In a total of 163 patients (mean age, 35 years; standard deviation, 13 years; 14/163 [8.6%] living with HIV; 109/163 [66.9%] men, 149/163 [91.4%] migrating to Germany within 5 years), the treatment of culture-confirmed MDR/RR-TB was initiated. Additional drug resistance to a fluoroquinolone or a second-line injectable agent was present in 15 of the 163 (9.2%) Mycobacterium tuberculosis strains; resistance against both the drug classes was present in 29 of the 163 (17.8%) strains. The median duration of MDR/RR-TB treatment was 20 months (interquartile range, 19.3-21.6 months), with a medium of five active drugs included. The median follow-up time was 4 years (47.7 months; interquartile range, 21.7-65.8 months). Among the 163 patients, cure was achieved in 25 (15.3%), 82 (50.3%) and 95 (58.3%) patients according to the outcome definitions of WHO-2013, WHO-2021, and the Tuberculosis Network European Trials Group-2016, respectively. The lost to follow-up rate was 17 of 163 (10.4%). Death was more likely in patients living with HIV (hazard ratio, 4.28; 95% confidence interval, 1.26-12.86) and older patients (hazard ratio, 1.08; 95% confidence interval, 1.05-1.12; increment of 1 year). Overall, 101/163 (62.0%) patients experienced long-term, relapse-free cure; of those, 101/122 (82.8%) patients with a known status (not lost to-follow-up or transferred out) at follow-up. CONCLUSION: Under optimal management conditions leveraging individualized treatment regimens, long-term, relapse-free cure from MDR/RR-TB is substantially higher than cure rates defined by current treatment outcome definitions.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Male , Humans , Adult , Female , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Rifampin/therapeutic use , Treatment Outcome , HIV Infections/drug therapy
8.
Nat Commun ; 13(1): 5105, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042200

ABSTRACT

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bayes Theorem , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology
9.
Microbiol Spectr ; 10(4): e0171422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35938728

ABSTRACT

Infections due to Mycobacterium abscessus are a major cause of mortality and morbidity in cystic fibrosis (CF) patients. Furthermore, M. abscessus has been suspected to be involved in person-to-person transmissions. In 2016, dominant global clonal complexes (DCCs) that occur worldwide among CF patients have been described. To elucidate the epidemiological situation of M. abscessus among CF patients in Germany and to put these data into a global context, we performed whole-genome sequencing of a set of 154 M. abscessus isolates from 123 German patients treated in 14 CF centers. We used MTBseq pipeline to identify clusters of closely related isolates and correlate those with global findings. Genotypic drug susceptibility for macrolides and aminoglycosides was assessed by characterization of the erm(41), rrl, and rrs genes. By this approach, we could identify representatives of all major DCCs (Absc 1, Absc 2, and Mass 1) in our cohort. Intrapersonal isolates showed higher genetic relatedness than interpersonal isolates (median 3 SNPs versus 16 SNPs; P < 0.001). We further identified four clusters with German patients from same centers clustering with less than 25 SNPs distance (range 3 to 18 SNPs) but did not find any hint for in-hospital person-to-person transmission. This is the largest study investigating phylogenetic relations of M. abscessus isolates in Germany. We identified representatives of all reported DCCs but evidence for nosocomial transmission remained inconclusive. Thus, the occurrence of genetically closely related isolates of M. abscessus has to be interpreted with care, as a direct interhuman transmission cannot be directly deduced. IMPORTANCE Mycobacterium abscessus is a major respiratory pathogen in cystic fibrosis (CF) patients. Recently it has been shown that dominant global clonal complexes (DCCs) have spread worldwide among CF patients. This study investigated the epidemiological situation of M. abscessus among CF patients in Germany by performing whole-genome sequencing (WGS) of a set of 154 M. abscessus from 123 German patients treated in 14 CF centers. This is the largest study investigating the phylogenetic relationship of M. abscessus CF isolates in Germany.


Subject(s)
Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/epidemiology , Humans , Molecular Epidemiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics , Phylogeny
10.
Microorganisms ; 10(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889097

ABSTRACT

This cross-sectional study was conducted at the slaughterhouses/slabs of Oudalan and Ouagadougou in Burkina Faso, between August and September 2013. It aimed at determining the prevalence of bovine tuberculosis (bTB) suggestive lesions in slaughtered cattle carcasses and to identify and characterize the mycobacteria isolated from these lesions. A thorough postmortem examination was conducted on carcasses of a total of 2165 randomly selected cattle. The overall prevalence of bTB suggestive lesions was 2.7% (58/2165; 95% CI 2.1-3.5%). Due to the low number of positive samples, data were descriptively presented. The lesions were either observed localized in one or a few organs or generalized (i.e., miliary bTB) in 96.6% (n = 57) and 3.4% (n = 2), respectively. The identified mycobacteria were M. bovis (44.4%, n = 20), M. fortuitum (8.9%, n = 4), M. elephantis (6.7%, n = 3), M. brumae (4.4%, n = 2), M. avium (2.2%, n = 1), M. asiaticum (2.2%, n = 1), M. terrae (2.2%, n = 1), and unknown non-tuberculous mycobacteria (NTM) (11.1%, n = 5). Moreover, eight mixed cultures with more than one Mycobacterium species growing were also observed, of which three were M. bovis and M. fortuitum and three were M. bovis and M. elephantis. In conclusion, M. bovis is the predominant causative agent of mycobacterial infections in the study area. Our study has identified a base to broaden the epidemiological knowledge on zoonotic transmission of mycobacteria in Burkina Faso by future studies investigating further samples from humans and animals, including wild animals employing molecular techniques.

11.
Lancet Microbe ; 3(9): e672-e682, 2022 09.
Article in English | MEDLINE | ID: mdl-35907429

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) of Mycobacterium tuberculosis complex has become an important tool in diagnosis and management of drug-resistant tuberculosis. However, data correlating resistance genotype with quantitative phenotypic antimicrobial susceptibility testing (AST) are scarce. METHODS: In a prospective multicentre observational study, 900 clinical M tuberculosis complex isolates were collected from adults with drug-resistant tuberculosis in five high-endemic tuberculosis settings around the world (Georgia, Moldova, Peru, South Africa, and Viet Nam) between Dec 5, 2014, and Dec 12, 2017. Minimum inhibitory concentrations (MICs) and resulting binary phenotypic AST results for up to nine antituberculosis drugs were determined and correlated with resistance-conferring mutations identified by WGS. FINDINGS: Considering WHO-endorsed critical concentrations as reference, WGS had high accuracy for prediction of resistance to isoniazid (sensitivity 98·8% [95% CI 98·5-99·0]; specificity 96·6% [95% CI 95·2-97·9]), levofloxacin (sensitivity 94·8% [93·3-97·6]; specificity 97·1% [96·7-97·6]), kanamycin (sensitivity 96·1% [95·4-96·8]; specificity 95·0% [94·4-95·7]), amikacin (sensitivity 97·2% [96·4-98·1]; specificity 98·6% [98·3-98·9]), and capreomycin (sensitivity 93·1% [90·0-96·3]; specificity 98·3% [98·0-98·7]). For rifampicin, pyrazinamide, and ethambutol, the specificity of resistance prediction was suboptimal (64·0% [61·0-67·1], 83·8% [81·0-86·5], and 40·1% [37·4-42·9], respectively). Specificity for rifampicin increased to 83·9% when borderline mutations with MICs overlapping with the critical concentration were excluded. Consequently, we highlighted mutations in M tuberculosis complex isolates that are often falsely identified as susceptible by phenotypic AST, and we identified potential novel resistance-conferring mutations. INTERPRETATION: The combined analysis of mutations and quantitative phenotypes shows the potential of WGS to produce a refined interpretation of resistance, which is needed for individualised therapy, and eventually could allow differential drug dosing. However, variability of MIC data for some M tuberculosis complex isolates carrying identical mutations also reveals limitations of our understanding of the genotype and phenotype relationships (eg, including epistasis and strain genetic background). FUNDING: Bill & Melinda Gates Foundation, German Centre for Infection Research, German Research Foundation, Excellence Cluster Precision Medicine of Inflammation (EXC 2167), and Leibniz ScienceCampus EvoLUNG.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Genomics , Humans , Mycobacterium tuberculosis/genetics , Phenotype , Prospective Studies , Rifampin/pharmacology , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis
12.
Front Cell Infect Microbiol ; 12: 816615, 2022.
Article in English | MEDLINE | ID: mdl-35419298

ABSTRACT

Mycobacterium abscessus complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies M. abscessus, M. bolletii and M. massiliense. Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related Mycobacterium genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Anti-Bacterial Agents , Genomics , Humans , Multiplex Polymerase Chain Reaction , Mycobacterium/genetics , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics
13.
J Antimicrob Chemother ; 77(6): 1685-1693, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35260883

ABSTRACT

OBJECTIVES: To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. METHODS: The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. RESULTS: We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. CONCLUSIONS: In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.


Subject(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
14.
Eur Respir J ; 59(3)2022 03.
Article in English | MEDLINE | ID: mdl-34503982

ABSTRACT

RATIONALE: Bedaquiline has been classified as a group A drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) by the World Health Organization; however, globally emerging resistance threatens the effectivity of novel MDR-TB treatment regimens. OBJECTIVES: We analysed pre-existing and emerging bedaquiline resistance in bedaquiline-based MDR-TB therapies, and risk factors associated with treatment failure and death. METHODS: In a cross-sectional cohort study, we employed patient data, whole-genome sequencing (WGS) and phenotyping of Mycobacterium tuberculosis complex (MTBC) isolates. We could retrieve baseline isolates from 30.5% (62 out of 203) of all MDR-TB patients who received bedaquiline between 2016 and 2018 in the Republic of Moldova. This includes 26 patients for whom we could also retrieve a follow-up isolate. MEASUREMENTS AND MAIN RESULTS: At baseline, all MTBC isolates were susceptible to bedaquiline. Among 26 patients with available baseline and follow-up isolates, four (15.3%) patients harboured strains which acquired bedaquiline resistance under therapy, while one (3.8%) patient was re-infected with a second bedaquiline-resistant strain. Treatment failure and death were associated with cavitary disease (p=0.011), and any additional drug prescribed in the bedaquiline-containing regimen with WGS-predicted resistance at baseline (OR 1.92 per unit increase, 95% CI 1.15-3.21; p=0.012). CONCLUSIONS: MDR-TB treatments based on bedaquiline require a functional background regimen to achieve high cure rates and to prevent the evolution of bedaquiline resistance. Novel MDR-TB therapies with bedaquiline require timely and comprehensive drug resistance monitoring.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/therapeutic use , Cross-Sectional Studies , Diarylquinolines/therapeutic use , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
15.
BMC Genomics ; 22(1): 385, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34034663

ABSTRACT

BACKGROUND: Mycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with the M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and 15 clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. RESULTS: We found that ~ 18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85% of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independent of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. CONCLUSIONS: This study represents the first systematic prediction and in silico characterization of the MAB secretome. Our study demonstrates that bioinformatics strategies can help to broadly explore mycobacterial secretomes including those of clinical isolates and to tailor subsequent, complex and time-consuming experimental approaches accordingly. This approach can support systematic investigation exploring candidate proteins for new vaccines and diagnostic markers to distinguish between colonization and infection. All predicted secretomes were deposited in the Secret-AAR web-server ( http://microbiomics.ibt.unam.mx/tools/aar/index.php ).


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Humans , Mycobacterium abscessus/genetics
16.
Clin Infect Dis ; 73(7): 1194-1202, 2021 10 05.
Article in English | MEDLINE | ID: mdl-33900387

ABSTRACT

BACKGROUND: Comprehensive and reliable drug susceptibility testing (DST) is urgently needed to provide adequate treatment regimens for patients with multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB). We determined whether next-generation sequencing (NGS) analysis of Mycobacterium tuberculosis complex isolates and genes implicated in drug resistance can guide the design of effective MDR/RR-TB treatment regimens. METHODS: NGS-based genomic DST predictions of M. tuberculosis complex isolates from MDR/RR-TB patients admitted to a TB reference center in Germany between 1 January 2015 and 30 April 2019 were compared with phenotypic DST results of mycobacteria growth indicator tubes (MGIT). Standardized treatment algorithms were applied to design individualized therapies based on either genomic or phenotypic DST results, and discrepancies were further evaluated by determination of minimal inhibitory drug concentrations (MICs) using Sensititre MYCOTBI and UKMYC microtiter plates. RESULTS: In 70 patients with MDR/RR-TB, agreement among 1048 pairwise comparisons of genomic and phenotypic DST was 86.3%; 76 (7.2%) results were discordant, and 68 (6.5%) could not be evaluated due to the presence of polymorphisms with yet unknown implications for drug resistance. Importantly, 549 of 561 (97.9%) predictions of drug susceptibility were phenotypically confirmed in MGIT, and 27 of 64 (42.2%) false-positive results were linked to previously described mutations mediating a low or moderate MIC increase. Virtually all drugs (99.0%) used in combination therapies that were inferred from genomic DST were confirmed to be susceptible by phenotypic DST. CONCLUSIONS: NGS-based genomic DST can reliably guide the design of effective MDR/RR-TB treatment regimens.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/drug therapy
17.
Antimicrob Agents Chemother ; 65(7): e0252020, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33903103

ABSTRACT

Preexisting and newly emerging resistant pathogen subpopulations (heteroresistance) are potential risk factors for treatment failure of multi/extensively drug resistant (MDR/XDR) tuberculosis (TB). Intrapatient evolutionary dynamics of Mycobacterium tuberculosis complex (Mtbc) strains and their implications on treatment outcomes are still not completely understood. To elucidate how Mtbc strains escape therapy, we analyzed 13 serial isolates from a German patient by whole-genome sequencing. Sequencing data were compared with phenotypic drug susceptibility profiles and the patient's collective 27-year treatment history to further elucidate factors fostering intrapatient resistance evolution. The patient endured five distinct TB episodes, ending in resistance to 16 drugs and a nearly untreatable XDR-TB infection. The first isolate obtained, during the patient's 5th TB episode, presented fixed resistance mutations to 7 anti-TB drugs, including isoniazid, rifampin, streptomycin, pyrazinamide, prothionamide, para-aminosalicylic acid, and cycloserine-terizidone. Over the next 13 years, a dynamic evolution with coexisting, heterogeneous subpopulations was observed in 6 out of 13 sequential bacterial isolates. The emergence of drug-resistant subpopulations coincided with frequent changes in treatment regimens, which often included two or fewer active compounds. This evolutionary arms race between competing subpopulations ultimately resulted in the fixation of a single XDR variant. Our data demonstrate the complex intrapatient microevolution of Mtbc subpopulations during failing MDR/XDR-TB treatment. Designing effective treatment regimens based on rapid detection of (hetero) resistance is key to avoid resistance development and treatment failure.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Germany , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
19.
Genome Med ; 12(1): 104, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239092

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains not detected by commercial molecular drug susceptibility testing (mDST) assays due to the RpoB I491F resistance mutation are threatening the control of MDR tuberculosis (MDR-TB) in Eswatini. METHODS: We investigate the evolution and spread of MDR strains in Eswatini with a focus on bedaquiline (BDQ) and clofazimine (CFZ) resistance using whole-genome sequencing in two collections ((1) national drug resistance survey, 2009-2010; (2) MDR strains from the Nhlangano region, 2014-2017). RESULTS: MDR strains in collection 1 had a high cluster rate (95%, 117/123 MDR strains) with 55% grouped into the two largest clusters (gCL3, n = 28; gCL10, n = 40). All gCL10 isolates, which likely emerged around 1993 (95% highest posterior density 1987-1998), carried the mutation RpoB I491F that is missed by commercial mDST assays. In addition, 21 (53%) gCL10 isolates shared a Rv0678 M146T mutation that correlated with elevated minimum inhibitory concentrations (MICs) to BDQ and CFZ compared to wild type isolates. gCL10 isolates with the Rv0678 M146T mutation were also detected in collection 2. CONCLUSION: The high clustering rate suggests that transmission has been driving the MDR-TB epidemic in Eswatini for three decades. The presence of MDR strains in Eswatini that are not detected by commercial mDST assays and have elevated MICs to BDQ and CFZ potentially jeopardizes the successful implementation of new MDR-TB treatment guidelines. Measures to limit the spread of these outbreak isolates need to be implemented urgently.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Diarylquinolines/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Clone Cells/drug effects , Disease Outbreaks , Eswatini , Humans , Microbial Sensitivity Tests , Mutation , Tuberculosis, Multidrug-Resistant/microbiology
20.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: mdl-32938741

ABSTRACT

Mycobacterium abscessus is a highly antibiotic-resistant opportunistic pathogen causing clinically challenging infections in patients with preexisting lung diseases or under immunosuppression. Hence, reliable antibiotic susceptibility data are required for effective treatment. Aims of this study were to investigate (i) the congruence of genotypic and phenotypic antimicrobial susceptibility testing, (ii) the relationship between resistance profile and clinical course, and (iii) the phylogenetic relations of M. abscessus in a German patient cohort. A total of 39 isolates from 29 patients infected or colonized with M. abscessus underwent genotypic and phenotypic drug susceptibility testing. Clinical data were correlated with susceptibility data. Phylogenetic analysis was performed by means of whole-genome sequencing (WGS) and single-nucleotide polymorphism (SNP) analysis. Macrolide resistance was mainly mediated by functional Erm(41) methyltransferases (T28 sequevars) in M. abscessus subsp. abscessus (n = 25) and M. abscessus subsp. bolletii (n = 2). It was significantly associated with impaired culture conversion (P = 0.02). According to the core SNP phylogeny, we identified three clusters of closely related isolates with SNP distances below 25. Representatives of all circulating global clones (Absc. 1, Absc. 2, and Mass. 1) were identified in our cohort. However, we could not determine evidence for in-hospital interhuman transmission from clinical data. In our patient cohort, we identified three M. abscessus clusters with closely related isolates and representatives of the previously described international clusters but no human-to-human in-hospital transmission. Macrolide and aminoglycoside susceptibility data are critical for therapeutic decision-making in M. abscessus infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Macrolides/pharmacology , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...