Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562687

ABSTRACT

Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenomics approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued growth inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in promoting G1 progression.

2.
Mol Syst Biol ; 20(5): 521-548, 2024 May.
Article in English | MEDLINE | ID: mdl-38472305

ABSTRACT

Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website ( https://thecellvision.org/pifia/ ), PIFiA is a resource for the quantitative analysis of protein organization within the cell.


Subject(s)
Microscopy, Fluorescence , Saccharomyces cerevisiae , Single-Cell Analysis , Single-Cell Analysis/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Microscopy, Fluorescence/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Image Processing, Computer-Assisted/methods , Molecular Sequence Annotation , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics
3.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38452761

ABSTRACT

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Eukaryotic Cells/metabolism , Neural Networks, Computer , Proteome/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38518223

ABSTRACT

We previously constructed TheCellVision.org, a central repository for visualizing and mining data from yeast high-content imaging projects. At its inception, TheCellVision.org housed two high-content screening (HCS) projects providing genome-scale protein abundance and localization information for the budding yeast Saccharomyces cerevisiae, as well as a comprehensive analysis of the morphology of its endocytic compartments upon systematic genetic perturbation of each yeast gene. Here, we report on the expansion of TheCellVision.org by the addition of two new HCS projects and the incorporation of new global functionalities. Specifically, TheCellVision.org now hosts images from the Cell Cycle Omics project, which describes genome-scale cell cycle-resolved dynamics in protein localization, protein concentration, gene expression, and translational efficiency in budding yeast. Moreover, it hosts PIFiA, a computational tool for image-based predictions of protein functional annotations. Across all its projects, TheCellVision.org now houses >800,000 microscopy images along with computational tools for exploring both the images and their associated datasets. Together with the newly added global functionalities, which include the ability to query genes in any of the hosted projects using either yeast or human gene names, TheCellVision.org provides an expanding resource for single-cell eukaryotic biology.


Subject(s)
Data Mining , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Data Mining/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle
5.
ArXiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38351940

ABSTRACT

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

6.
bioRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045359

ABSTRACT

Gene duplication is common across the tree of life, including yeast and humans, and contributes to genomic robustness. In this study, we examined changes in the subcellular localization and abundance of proteins in response to the deletion of their paralogs originating from the whole-genome duplication event, which is a largely unexplored mechanism of functional divergence. We performed a systematic single-cell imaging analysis of protein dynamics and screened subcellular redistribution of proteins, capturing their localization and abundance changes, providing insight into forces determining paralog retention. Paralogs showed dependency, whereby proteins required their paralog to maintain their native abundance or localization, more often than compensation. Network feature analysis suggested the importance of functional redundancy and rewiring of protein and genetic interactions underlying redistribution response of paralogs. Translation of non-canonical protein isoform emerged as a novel compensatory mechanism. This study provides new insights into paralog retention and evolutionary forces that shape genomes.

7.
Nat Commun ; 14(1): 6774, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891180

ABSTRACT

Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.


Subject(s)
Longevity , Protein Processing, Post-Translational , Male , Humans , Amino Acid Sequence , Acetylation , Longevity/genetics , Ubiquitins/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Cell Syst ; 14(5): 418-422.e2, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37201508

ABSTRACT

CRISPR screens are used extensively to systematically interrogate the phenotype-to-genotype problem. In contrast to early CRISPR screens, which defined core cell fitness genes, most current efforts now aim to identify context-specific phenotypes that differentiate a cell line, genetic background, or condition of interest, such as a drug treatment. While CRISPR-related technologies have shown great promise and a fast pace of innovation, a better understanding of standards and methods for quality assessment of CRISPR screen results is crucial to guide technology development and application. Specifically, many commonly used metrics for quantifying screen quality do not accurately measure the reproducibility of context-specific hits. We highlight the importance of reporting reproducibility statistics that directly relate to the purpose of the screen and suggest the use of metrics that are sensitive to context-specific signal. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Reproducibility of Results , Phenotype , Cell Line
11.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205480

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.

12.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909656

ABSTRACT

Fluorescence microscopy data describe protein localization patterns at single-cell resolution and have the potential to reveal whole-proteome functional information with remarkable precision. Yet, extracting biologically meaningful representations from cell micrographs remains a major challenge. Existing approaches often fail to learn robust and noise-invariant features or rely on supervised labels for accurate annotations. We developed PIFiA, (Protein Image-based Functional Annotation), a self-supervised approach for protein functional annotation from single-cell imaging data. We imaged the global yeast ORF-GFP collection and applied PIFiA to generate protein feature profiles from single-cell images of fluorescently tagged proteins. We show that PIFiA outperforms existing approaches for molecular representation learning and describe a range of downstream analysis tasks to explore the information content of the feature profiles. Specifically, we cluster extracted features into a hierarchy of functional organization, study cell population heterogeneity, and develop techniques to distinguish multi-localizing proteins and identify functional modules. Finally, we confirm new PIFiA predictions using a colocalization assay, suggesting previously unappreciated biological roles for several proteins. Paired with a fully interactive website (https://thecellvision.org/pifia/), PIFiA is a resource for the quantitative analysis of protein organization within the cell.

13.
PLoS Genet ; 18(8): e1010349, 2022 08.
Article in English | MEDLINE | ID: mdl-36037231

ABSTRACT

A network of transcription factors (TFs) coordinates transcription with cell cycle events in eukaryotes. Most TFs in the network are phosphorylated by cyclin-dependent kinase (CDK), which limits their activities during the cell cycle. Here, we investigate the physiological consequences of disrupting CDK regulation of the paralogous repressors Yhp1 and Yox1 in yeast. Blocking Yhp1/Yox1 phosphorylation increases their levels and decreases expression of essential cell cycle regulatory genes which, unexpectedly, increases cellular fitness in optimal growth conditions. Using synthetic genetic interaction screens, we find that Yhp1/Yox1 mutations improve the fitness of mutants with mitotic defects, including condensin mutants. Blocking Yhp1/Yox1 phosphorylation simultaneously accelerates the G1/S transition and delays mitotic exit, without decreasing proliferation rate. This mitotic delay partially reverses the chromosome segregation defect of condensin mutants, potentially explaining their increased fitness when combined with Yhp1/Yox1 phosphomutants. These findings reveal how altering expression of cell cycle genes leads to a redistribution of cell cycle timing and confers a fitness advantage to cells.


Subject(s)
Genes, cdc , Saccharomyces cerevisiae Proteins , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Mitosis/genetics , Phosphorylation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Biochem Soc Trans ; 50(2): 713-721, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35285506

ABSTRACT

Over the past decade, major efforts have been made to systematically survey the characteristics or phenotypes associated with genetic variation in a variety of model systems. These so-called phenomics projects involve the measurement of 'phenomes', or the set of phenotypic information that describes an organism or cell, in various genetic contexts or states, and in response to external factors, such as environmental signals. Our understanding of the phenome of an organism depends on the availability of reagents that enable systematic evaluation of the spectrum of possible phenotypic variation and the types of measurements that can be taken. Here, we highlight phenomics studies that use the budding yeast, a pioneer model organism for functional genomics research. We focus on genetic perturbation screens designed to explore genetic interactions, using a variety of phenotypic read-outs, from cell growth to subcellular morphology.


Subject(s)
Phenomics , Saccharomyces cerevisiae , Gene Regulatory Networks , Genomics , Phenotype , Saccharomyces cerevisiae/genetics
16.
NPJ Syst Biol Appl ; 8(1): 3, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087094

ABSTRACT

Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.


Subject(s)
Drug Discovery , Saccharomyces cerevisiae , Reproducibility of Results , Saccharomyces cerevisiae/genetics
18.
Cell Syst ; 12(6): 608-621, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34139168

ABSTRACT

Single-cell image analysis provides a powerful approach for studying cell-to-cell heterogeneity, which is an important attribute of isogenic cell populations, from microbial cultures to individual cells in multicellular organisms. This phenotypic variability must be explained at a mechanistic level if biologists are to fully understand cellular function and address the genotype-to-phenotype relationship. Variability in single-cell phenotypes is obscured by bulk readouts or averaging of phenotypes from individual cells in a sample; thus, single-cell image analysis enables a higher resolution view of cellular function. Here, we consider examples of both small- and large-scale studies carried out with isogenic cell populations assessed by fluorescence microscopy, and we illustrate the advantages, challenges, and the promise of quantitative single-cell image analysis.


Subject(s)
Biological Variation, Population , Single-Cell Analysis , Microscopy, Fluorescence , Phenotype
19.
Mol Syst Biol ; 17(6): e10207, 2021 06.
Article in English | MEDLINE | ID: mdl-34096681

ABSTRACT

The ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics. We characterized YETI using growth phenotyping and BAR-seq screens, and we used a YETI allele to identify the regulon of Rof1, showing that it acts to repress transcription. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from eukaryotic and prokaryotic systems shows that native expression is a variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3 EB42, that gives lower expression than Z3 EV, a feature enabling conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.


Subject(s)
Genes, Essential , Saccharomyces cerevisiae , Gene Library , Plasmids , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics
20.
Science ; 372(6542)2021 05 07.
Article in English | MEDLINE | ID: mdl-33958448

ABSTRACT

Phenotypes associated with genetic variants can be altered by interactions with other genetic variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have been mapped on a global scale, but the environmental influence on the plasticity of genetic networks has not been examined systematically. To assess environmental rewiring of genetic networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast gene pairs for dynamic, differential interactions. Different conditions revealed novel differential interactions, which often uncovered functional connections between distantly related gene pairs. However, the majority of observed genetic interactions remained unchanged in different conditions, suggesting that the global yeast genetic interaction network is robust to environmental perturbation and captures the fundamental functional architecture of a eukaryotic cell.


Subject(s)
Gene Regulatory Networks , Gene-Environment Interaction , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Alleles , Genetic Fitness , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...